
Argonne National Laboratory9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-252OOQP User Guide�byE. Michael Gertzy and Stephen WrightzMathematics and Computer Science DivisionTechnical Memorandum No. 252October 2001�This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S.Department of Energy, under Contract W-31-109-Eng-38; and by National Science Foun-dation Grants CDA-9726385 and ACI-0082065.yAlso Electrical and Computer Engineering Department, Northwestern University,Evanston, IL 60208; gertz@ece.nwu.eduzComputer Sciences Department, University of Wisconsin-Madison, 1210 W. DaytonStreet, Madison, WI 53706; swright@cs.wisc.edu

Argonne National Laboratory, with facilities in the states of Illinois andIdaho, is owned by the United States Government and operated by TheUniversity of Chicago under the provisions of a contract with the Depart-ment of Energy.
DISCLAIMERThis report was prepared as an account of work sponsored by an agencyof the United States Government. Neither the United States Governmentnor any agency thereof, nor The University of Chicago, nor any of their em-ployees or o�cers, makes any warranty, express or implied, or assumes anylegal liability or responsibility for the accuracy, completeness, or usefulnessof any information, apparatus, product, or process disclosed, or representsthat its use would not infringe privately-owned rights. Reference herein toany speci�c commercial product, process, or service by trade name, trade-mark, manufacturer, or otherwise, does not necessarily constitute or implyits endorsement, recommendation, or favoring by the United States Govern-ment or any agency thereof. The views and opinions of document authorsexpressed herein do not necessarily state or re
ect those of the United StatesGovernment or any agency thereof, Argonne National Laboratory, or TheUniversity of Chicago.

ii

ContentsAbstract 11 Introduction 21.1 Di�erent Views of OOQP . 31.2 Obtaining OOQP . 41.3 How to Read This Manual . 51.4 Other Resources . 62 Using the Default QP Formulation 72.1 Command-Line Interface . 72.2 Calling from a C Program . 102.3 Calling from a C++ Program 142.4 Use in AMPL . 172.5 Use in MATLAB . 183 Overview of the OOQP Development Framework 203.1 The Three Layers of OOQP 203.2 OOQP Directory Structure and Build Process 234 Working with the QP Solver 274.1 Primal-Dual Interior-Point Algorithms 274.2 Monitoring the Algorithm: The Monitor Class 294.3 Checking Termination Conditions: The Status Class 325 Creating a New QP Formulation 355.1 Linear Algebra Operations . 365.2 Specializing the Problem Formulation Layer 375.2.1 Specializing Data . 375.2.2 Specializing Variables 385.2.3 Specializing Residuals 405.2.4 Specializing LinearSystem 415.2.5 Specializing ProblemFormulation 436 Using Linear Algebra Objects 466.1 Reference Counting . 466.2 Using SimpleVector . 496.3 Using DenseGenMatrix and DenseSymMatrix 506.4 Using SparseGenMatrix and SparseSymMatrix 53iii

7 Specializing Linear Algebra Objects 577.1 Using a Di�erent Linear Equation Solver 577.1.1 Creating a Subclass of DoubleLinearSolver 577.1.2 Creating a Subclass of ProblemFormulation 597.2 Specializing the Representation of Vectors and Matrices . . . 62References 67

iv

OOQP User GuidebyE. Michael Gertz and Stephen J. WrightAbstractOOQP is an object-oriented software package for solving convexquadratic programming problems (QP). We describe the design ofOOQP, and document how to use OOQP in its default con�guration.We further describe OOQP as a development framework, and outlinehow to develop custom solvers that solve QPs with exploitable struc-ture or use specialized linear algebra.

1

1 IntroductionOOQP is a package for solving convex quadratic programming problems(QPs). These are optimization problems in which the objective function isa convex quadratic function and the constraints are linear functions of avector of real variables. They have the following general form:minx 12xTQx+ cTx s.t. Ax = b; Cx � d; (1)where Q is a symmetric positive semide�nite n � n matrix,; x 2 IRn is avector of variables; A and C are matrices of dimensions ma�n and mc�n,respectively; and c, b, and d are vectors of appropriate dimensions.Many QPs that arise in practice are highly structured. That is, the ma-trices that de�ne them have properties that can be exploited in designinge�cient solution techniques. For example, they may be general sparse ma-trices; diagonal, banded, or block-banded matrices; or low-rank matrices.A simple and common instance of structure occurs in applications in whichthe inequality constraints include simple upper or lower bounds on somecomponents of x; the rows of C de�ning these bounds each contain a singlenonzero element. A more extreme example of exploitable structure occursin the QPs that arise in support vector machines. In one formulation of thisproblem, Q is dense but is a low-rank perturbation of a positive diagonalmatrix.In addition to the wide variations in problem structure, there is widedivergence in the ways in which the problem data and variables for a QPcan be stored on a computer. Part of this variation may be due to thestructure of the particular QP: it makes sense to store the problem data andvariables in a way that is natural to the application context in which theQP arises, rather than shoehorning it into a form that is convenient for theQP software. Variations in storage schemes arise also because of di�erentstorage conventions for sparse matrices; because of the ways that matricesand vectors are represented on di�erent parallel platforms; and because largedata sets may necessitate specialized out-of-core storage schemes.Algorithms for QP, as in many other areas of optimization, depend crit-ically on linear algebra operations of various types: matrix factorizations,updates, vector inner products and \saxpy" operations. Sophisticated soft-ware packages may be used to implement the required linear algebra oper-ation in a manner that is appropriate both to the problem structure and tothe underlying hardware platform.One might expect this wide variation in structure and representation ofQPs to give rise to a plethora of algorithms, each appropriate to a speci�c2

situation. Such is not the case. Algorithms such as gradient projection,active set, and interior point all appear to function well in a wide variety ofcircumstances. Interior-point methods in particular appear to be compet-itive in terms of e�ciency on almost all problem types, provided they arecoded in a way that exploits the problem structure.In OOQP, object-oriented programming techniques are used to implementa primal-dual interior-point algorithm in terms of abstract operations on ab-stract objects. Then, at a lower level of the code, the abstract operationsare specialized to particular problem formulations and data representations.By reusing the top-level code across the whole space of applications, whileexploiting structure and hardware capabilities at the lower level to producetuned, concrete implementations of the abstract operations, users can pro-duce e�cient, specialized QP solvers with a minimum of e�ort.This distribution of OOQP contains code to fully implement a solverfor a number of standard OOQP formulations, including a version of theformulation (1) that assumes Q, A, and C to be general sparse matrices.The code in the distribution also provides a framework and examples forusers who wish to implement solvers that are tailored to speci�c structuredQPs and speci�c computational environments.1.1 Di�erent Views of OOQPIn this section, we describe di�erent ways in which OOQP may be used.Shrink-Wrapped Solution. The OOQP distribution can be used as ano�-the-shelf, shrink-wrapped solver for QPs of certain types. Users can sim-ply install it and execute it on their own problem data, without payingany attention to the structure of the code or the algorithms behind it. Inparticular, there is an implementation for solving general QPs (of the form(2) given in Section 2) in which the data matrices are sparse without anyassumed structure. (The linear algebra calculations in the distributed ver-sion are performed with the codes MA27 [9], but we have also implementedversions that use MA57 [14], Oblio [7], and SuperLU [6].) The distributionalso contains an implementation for computing a support vector machineto solve a classi�cation problem; an implementation for solving the Huberregression problem; and an implementation for solving a quadratic programwith simple bounds on a distributed platform, using PETSc [4]. Theseimplementations each may be called via a command-line executable, usingascii input �les for de�ning the data in a manner appropriate to the prob-lem. Some of the implementations can also be called via the optimization3

modeling language AMPL or via MATLAB.See the README �le in the distribution for further details on the special-ized implementations included in the distribution.Embeddable Solver. Some users may wish to embed OOQP code intotheir own applications, calling the QP solver as a subroutine. This modeof use is familiar to users of traditional optimization software packages andnumerical software libraries such as NAG or IMSL. The OOQP distributionsupplies C and C++ interfaces that allow the users to �ll out the dataarrays for the formulation (2) themselves, then call the OOQP solver as asubroutine.Development Framework. Some users may wish to take advantage ofthe development framework provided by OOQP to develop QP solvers thatexploit the structure of speci�c problems. OOQP is an extensible C++framework; and by de�ning their own specialized versions of the storageschemes and the abstract operations used by the interior-point algorithm,users may customize the package to work e�ciently on their own applica-tions.Users may also modify one of the default implementations in the distri-bution by replacing the matrix and vector representations and the imple-mentations of the abstract operations by their own variants. For example, auser may wish to replace the code for factoring symmetric inde�nite matri-ces (a key operation in the interior-point algorithms) with some alternativesparse factorization code. Such replacements can be performed with relativeease by using the default implementation as an exemplar.Research Tool. Researchers in interior point-methods for convex quadraticprogramming problems may wish to modify the algorithms and heuristicsused in OOQP. They can do so by modifying the top-level code, which isquite short and easy to understand. Because of the abstraction and layeringdesign features of OOQP, they will then be able to see the e�ect of theirmodi�cations on the whole gamut of QP problem structures supported bythe code.1.2 Obtaining OOQPThe OOQP Web page www.cs.wisc.edu/~swright/ooqp/ has instructionson downloading the distribution. OOQP is also distributed by the Optimiza-4

tion Technology Center (OTC). See the page www.ece.nwu.edu/OTC/software/for information on obtaining OOQP and other OTC software.Unpacking the distribution will create a single directory called OOQP-X.XX,where X.XX is the revision number. For simplicity, we will refer to this direc-tory simply as OOQP throughout this document. The OOQP directory containsnumerous �les and subdirectories, which are discussed in detail in this man-ual. Whenever we refer to a particular directory in the text, we mean itto be taken as a subdirectory of OOQP. For example, when we discuss thedirectory src/QpGen, we mean OOQP/src/QpGen.1.3 How to Read This ManualThis manual gives an overview of OOQP|its structure, the algorithm onwhich it is based, the ways in which the solvers can be invoked, and itsutility as a development framework.Section 2 is intended for those who wish to use the solver for generalsparse quadratic programs (formulation (2)) that is provided with the OOQPdistribution. It shows how to de�ne the problem and invoke the solver invarious contexts. Section 3 gives an overview of the OOQP developmentframework, explaining the basics of the layered design and details of thedirectory structure and make�le-based build process. Section 4 provides ad-ditional details on the top layer of OOQP|the QP solver layer|for the ben-e�t of those who wish to experiment with variations on the two primal-dualinterior-point algorithms supplied with the OOQP distribution. Section 5describes the operations that must be de�ned and implemented in orderto create a solver for a new problem formulation. Section 6 is a practicaltutorial on OOQP's linear algebra layer. It describes the classes for vec-tors and sparse and dense matrices for the bene�t of users who wish to usethese classes in creating solvers for their own problem formulations. Finally,Section 7 is intended for advanced users who wish to specialize the linearalgebra operations of OOQP by adding new linear solvers or using di�erentmatrix and vector representations.Users who simply wish to use OOQP as a shrink-wrapped solver forquadratic programs formulated as general sparse problems (2) need readonly Section 2. Those interested in learning a little more about the design ofOOQP should read Sections 3.1 and 4.1, while those who wish to understandthe design and motivation more fully should read Sections 3.1, 4, 5, and 6,in that order. Users who wish to implement a solver for their own QPformulation should read Sections 3, 4.1, 5, and 6 and then review Section 5with code in hand. Those who wish to install new linear solvers should read5

Sections 2, 3, 6, and then focus on Section 7.1.4 Other ResourcesOOQP is distributed with additional documentation. In the top-level OOQPdirectory, the �le README describes the contents of the distribution. This�le includes the location of an html page that serves as an index of availabledocumentation and may be viewed through a browser such as Netscape.This documentation includes the following items.Online Reference Manual. We have extensively documented the sourcecode , using the tool doxygen to create a set of html pages that serve asa comprehensive reference manual to the OOQP development frame-work. Details of the class hierarchy, the purposes of the individualdata structures and methods within each class, and the meanings ofvarious parameters are explained in these pages.A Descriptive Paper. The archival paper [12] by the authors of OOQPcontains further discussion of the motivation for OOQP, the structureof the code, and the way in which the classes are reimplemented forvarious specialized applications.Manuals for Other Problem Formulations. Specialized QP formulationssuch as Svm, Huber, and QpBound have their own documentation.The documents describe the problems solved and how the solvers maybe invoked.OOQP Installation Guide. This document describes how to build andinstall OOQP.Distribution Documents. These include �les such as README that de-scribe the contents of various parts of the distribution.We also supply a number of sample problems and example programs inthe examples/ subdirectory. A README �le in this subdirectory explainsits contents. 6

2 Using the Default QP FormulationThe \general" quadratic programming formulation recognized by OOQP isas follows: min 12xTQx+ cTx subject to (2)Ax = b; d � Cx � f; l � x � u;where Q is an n� n positive semide�nite matrix, A is an ma� n matrix, Cis an mc�n matrix, and all other quantities are vectors of appropriate size.Some of the elements of l, u, d, and f may be in�nite in magnitude; that is,some components of Cx and x may not have upper and lower bounds.The subdirectory src/QpGen in the OOQP distribution, together withthe linear algebra subdirectories, contains code for solving problems formu-lated as (2), where Q, A, and C are general sparse matrices. In this section,we describe the di�erent methods that can be used to de�ne the problemdata and, accordingly, di�erent ways in which the solver can be invoked. Westart with a command-line interface that can be used when the problem isde�ned via a text �le (Section 2.1). We then describe several other inter-faces: calling OOQP as a function from a C program (Section 2.2); callingit from a C++ program (Section 2.3); invoking OOQP as a solver from anAMPL process (Section 2.4); and invoking OOQP as a subroutine from aMATLAB program (Section 2.5).2.1 Command-Line InterfaceWhen the problem is de�ned in quadratic MPS (\QPS") format in an ascii�le, the method of choice for solving the problem is to use an executable �lethat applies Mehrotra's predictor-corrector algorithm [19] with Gondzio'smultiple corrections [13]. (The Installation Guide that is supplied with theOOQP distribution describes how to create this executable �le, which isnamed qpgen-sparse-gondzio.exe.) We also provideqpgen-sparse-mehrotra.exe, an implementation of Mehrotra's algorithmthat does not use Gondzio's corrections. These executables take their inputsfrom a text �le in QPS format that describes the problem.The QPS format proposed by Maros and M�esz�aros [17] is a modi�cationof the standard and widely used MPS format for linear programming. Theformat is somewhat awkward and limited in the precision to which it canspecify numerical data. We support it, however, because it is used by anumber of QP solvers and is well known to users of optimization software.7

A description of the MPS format, extracted from Murtagh [20], can befound at the NEOS Guide atwww.mcs.anl.gov/otc/Guide/(search for \MPS"). The QPS format extends MPS by introducing a newsection of the input �le named QUADOBJ, which de�nes the matrix Q of thequadratic objective speci�ed in the formulation (2). This section, if present,must appear after all other sections in the input �le. The format of thissection is the same as the format of the COLUMNS section except that onlythe lower triangle of Q is stored. As in the COLUMNS section, the nonzerosare speci�ed in column major order.NAME ExampleROWSN objG r1L r2COLUMNSx1 r1 2.0 r2 -1.0x1 obj 1.5x2 r1 1.0 r2 2.0x2 obj -2.0RHS rhs1 obj -4.0rhs1 r1 2.0 r2 6.0BOUNDSUP bnd1 x1 20.0QUADOBJx1 x1 8.0x1 x2 2.0x2 x2 10.0ENDATA Figure 1: A sample QPS �leFigure 1 shows a sample QPS �le, taken from Maros and M�esz�aros [17].8

This �le describes the following problem:mimimize 4 + 1:5x1 � 2x2 + 12(8x21 + 4x1x2 + 10x22)subject to 2 � 2x1 + x2 � 1�1 � �x1 + 2x2 � 60 � x1 � 200 � x2 � 1: (3)If the �le (1) is named Example.qps and is stored in the subdirectory data,and if the executable qpgen-sparse-gondzio.exe appears in the OOQP di-rectory, then typingqpgen-sparse-gondzio.exe ./data/Example.qpswill solve the problem and create the output �le OOQP/data/Example.out.Solution for 'Example 'Rows: 3, Columns: 2PRIMAL VARIABLESName Value Lower Bound Upper Bound Multiplier0 x1 7.62500000e-01 0.00000e+00 2.00000e+01 6.37776644e-151 x2 4.75000000e-01 0.00000e+00 2.83645544e-12CONSTRAINTSInequality Constraints: 2Name Value Lower Bound Upper Bound Multiplier0 r1 2.00000000e+00 2.00000e+00 4.27500000e+001 r2 1.87500000e-01 6.00000e+00 -8.81876986e-16Objective value: 8.37188Figure 2: Sample output from qpgen-sparse-gondzio.exe9

Figure 2 shows the contents of Example.out. The PRIMAL VARIABLESare the components of the vector x in the formulation (2). The output showsthat the optimal values are x1 = 0:7625 and x2 = 0:475. The bounds oneach component of x, if any were speci�ed, are also displayed. If neitherbound is active, the reported value of the Lagrange multiplier in the �nalcolumn should be close to zero. Otherwise, it may take a positive valuewhen the lower bound is active or a negative value when the upper boundis active.The CONSTRAINTS section shows the values of the vectors Ax and Cx atthe computed solution x, compares these values with their upper and lowerbounds in the case of Cx, and displays Lagrange multiplier information inthe �nal column, in a similar way to the PRIMAL VARIABLES section.Note that the problem described in (1) contains no equality constraints(that is, A is null), so there is no Equality Constraints subsection in theCONSTRAINTS section of this particular output �le.2.2 Calling from a C ProgramOOQP supplies an interface to the default solver for (2) that may be calledfrom a C program. This operation is performed by the function qpsolvesp,which has the following prototype.voidqpsolvesp(double c[], int nx,int irowQ[], int nnzQ, int jcolQ[], double dQ[],double xlow[], char ixlow[],double xupp[], char ixupp[],int irowA[], int nnzA, int jcolA[], double dA[],double bA[], int my,int irowC[], int nnzC, int jcolC[], double dC[],double clow[], int mz, char iclow[],double cupp[], char icupp[],double x[], double gamma[], double phi[],double y[],double z[], double lambda[], double pi[],int print_level, int * ierr);This function uses an old-fashioned calling convention in which each argu-ment is a native type (for example, an int or an array of double). Whilecalling such a function can be tedious because of the sheer number of argu-10

ments, it is straightforward in that the relationship of each argument to theformulation (2) is fairly easy to understand.Sparse matrices are represented by three data structures|two integervectors and one vector of doubles, all of the same length. For the (general)matrix A, these data structures are irowA, jcolA and dA. The total numberof nonzeros in the sparse matrix A is nnzA. The k nonzero element of Aoccurs at row irowA[k] and column jcolA[k] and has value dA[k]. Rowsand columns are numbered starting at zero.For the symmetric matrix Q, only the elements of the lower triangle ofthe matrix are speci�ed in irowQ, jcolQ, and dQ.The elements of each matrix must be sorted into row-major order beforeqpsolvesp is called. While this requirement places an additional burden onthe user, it reduces the memory requirements of the qpsolvesp proceduresigni�cantly. OOQP provides a routine doubleLexSort that the user maycall to sort the matrix elements in the correct order. To sort the elementsof the matrix A, this routine can be invoked as follows:doubleLexSort(irowA, nnzA, jcolA, dA)We now show the correspondence between the input variables to qpsolvesp(which are not changed by the routine) and the formulation (2).c is the linear term in the objective function, a vector of length nx.nx is the number of primal variables, that is, the length of the vectorx in (2). It is the length of the input vectors c, xlow, ixlow, xupp,ixupp, x, gamma, and phi.irowQ, jcolQ, dQ hold the nnzQ lower triangular elements of the quadraticterm of the objective function.xlow, ixlow are the lower bounds on x. These contain the information inthe lower bounding vector l in (2). If there is a bound on elementk of x (that is, lk > �1), then xlow[k] should be set to the valueof lk and ixlow[k] should be set to one. Otherwise, element k ofboth arrays should be set to zero.xupp, ixupp are the upper bounds on x, that is, the information in thevector u in (2). These should be de�ned in a similar fashion toxlow and ixlow.irowA, jcolA, dA are the nnzA nonzero elements of the matrix A of linearequality constraints. 11

bA contains the right-hand-side vector b for the equality constraints in(2). The integer parameter my de�nes the length of this vector.clow, iclow are the lower bounds of the inequality constraints.cupp, icupp are the upper bounds of the inequality constraints.print level controls the amount of output the solver prints to the termi-nal. Larger values of print level cause more information to beprinted. The following values of print level are recognized:0 operate silently.� 10 print information about each interior point iteration.� 100 print information from the linear solvers.The remaining parameters are output parameters that hold the solutionto the QP. The variable x hold the value of interest to most users, that is, thesolution vector x in (2). The parameter ierr indicates whether the solverwas successful. The solver will return a nonzero value in ierr if it was unableto solve the problem. Negative values indicate that some error, such as anout of memory error, was encountered. For a description of the terminationcriteria of OOQP, and the positive values that might be returned in ierr,see Section 4.3.The remaining output variables are vectors of Lagrange multipliers; thearray y contains the Lagrange multipliers for the equality constraints Ax =b, while lambda and pi contain multipliers for the inequality constraintsCx � d and Cx � f , respectively. The output variable z should satisfyz = �� �:The multipliers for the lower and upper bounds x � l and x � u, arecontained in gamma and phi, respectively. Among other requirements (seeour discussion of optimality conditions in the next section), these vectorsshould satisfy the following relationship on output:c+Qx�ATy � CTz �
 + � = 0:Because it is somewhat cumbersome to allocate storage for all the pa-rameters of qpsolvesp individually, OOQP provides the following routineto perform all necessary allocations:voidnewQpGenSparse(double ** c, int nx,12

int ** irowQ, int nnzQ, int ** jcolQ, double ** dQ,double ** xlow, char ** ixlow,double ** xupp, char ** ixupp,int ** irowA, int nnzA, int ** jcolA, double ** dA,double ** b, int my,int ** irowC, int nnzC, int ** jcolC, double ** dC,double ** clow, int mz, char ** iclow,double ** cupp, char ** icupp,int * ierr);The following routine frees all this allocated storage:voidfreeQpGenSparse(double ** c,int ** irowQ, int ** jcolQ, double ** dQ,double ** xlow, char ** ixlow,double ** xupp, char ** ixupp,int ** irowA, int ** jcolA, double ** dA,double ** b,int ** irowC, int ** jcolC, double ** dC,double ** clow, char ** iclow,double ** cupp, char ** icupp);If newQpGenSparse succeeds, it returns ierr with a value of zero. Otherwise,it sets ierr to a nonzero value and frees any memory that it may haveallocated to that point. We emphasize that users are not required to usethese two routines; users can allocate arrays as they choose.The distribution also contains a variant of qpsolvesp that accepts sparsematrices stored in the slightly more compact Harwell-Boeing sparse format(see Du�, Erisman, and Reid [8]), rather than the default sparse formatdescribed above. In the Harwell-Boeing format, the nonzeros are stored inrow-major form, with jcolA[l] and dA[l] containing the column index andvalue of the l nonzero element, respectively. The integer vector krowA[k]indicates the index in jcolA and dA at which the �rst nonzero element forrow k is stored; its �nal element krowA[my+1] points to the index in jcolAand dA immediately after the last nonzero entry. See [8] and Section 6.4below for further details. The Harwell-Boeing version of qpsolvesp has thefollowing prototype.voidqpsolvehb(double c[], int nx,13

int krowQ[], int jcolQ[], double dQ[],double xlow[], char ixlow[],double xupp[], char ixupp[],int krowA[], int my, int jcolA[], double dA[],double bA[],int krowC[], int mz, int jcolC[], double dC[],double clow[], char iclow[],double cupp[], char icupp[],double x[], double gamma[], double phi[],double y[],double z[], double lambda[], double pi[],int print_level, int * ierr);The meaning of the parameters other than those that store the sparse ma-trices is identical to the case of qpsolvesp.The prototypes of the preceding routines are located in the header �lecQpGenSparse.h. Most users will need to include the line#include "cQpGenSparse.h"in their program. This header �le is safe to include not only in a C programbut also in a C++ program. Users who need more control over the solverthan these functions provide should develop a C++ interface to the solver.We refer users to the Installation Guide in the distribution for furtherinformation on building the executable using the OOQP header �les andlibraries.2.3 Calling from a C++ ProgramWhen calling OOQP from a C++ code, the user must create several objectsand call several methods in sequence. The process is more complicated thansimply calling a C function, but also more
exible. By varying the classes ofthe objects created, one can generate customized solvers for QPs of varioustypes. In this section, we focus on the default solver for the formulation (2).The full sequence of calls for this case is shown in Figure 3. In the remainderof this section, we explain each call in this sequence in turn.The �rst method call in this sequence initializes a new problem formula-tion qp of class QpGenSparseMa27, which is a subclass of ProblemFormulation.The de�nition of this class determines how the problem data will be stored,how the problem variables will be stored and manipulated, and how lin-ear systems will be solved. Our subclass QpGenSparseMa27 implements the14

QpGenSparseMa27 * qp= new QpGenSparseMa27(nx, my, mz, nnzQ, nnzA, nnzC);QpGenData * prob= (QpGenData *) qp->makeData(/* parameters here */);QpGenVars * vars= (QpGenVars *) qp->makeVariables(prob);QpGenResiduals * resid= (QpGenResiduals *) qp->makeResiduals(prob);GondzioSolver * s = new GondzioSolver(qp, prob);s->monitorSelf();int status = s->solve(prob,vars, resid);Figure 3: The basic sequence for calling OOQPproblem formulation (2), where the sparse matrices de�ning the problemare stored in sparse (not dense) matrices and that large linear systems thatde�ne steps of the interior-point method will be solved by using the MA27package from the Harwell Subroutine Library.In the next method call in Figure 3, the makeData method in the objectqp created in the �rst call creates the vectors and matrices that containthe problem data. In fact, qp contains di�erent versions of the makeDatamethod, which may be distinguished by their di�erent parameter lists. Userswhose matrix data is in row-major Harwell-Boeing sparse format may usethe following form of this call.QpGenData * prob= (QpGenData *) qp->makeData(c, krowQ, jcolQ, dQ,xlow, ixlow, xupp, ixupp,krowA, jcolA, dA, bA,krowC, jcolC, dC,clow, iclow, cupp, icupp);(The meaning of the parameters is explained in Section 2.2 above.) In thismethod, data structure references in prob are set to the actual arrays givenin the parameter list. This choice avoids copying of the data, but it requiresthat these arrays not be deleted until after deletion of the object prob.15

For users whose data is in sparse triple format, a special version ofmakeData named copyDataFromSparseTriple may be called as follows.QpGenData * prob= (QpGenData *) qp->copyDataFromSparseTriple(c, irowQ, nnzQ, jcolQ, dQ,xlow, ixlow, xupp, ixupp,irowA, nnzA, jcolA, dA, bA,irowC, nnzC, jcolC,clow, iclow, cupp, icupp);(The meaning of the parameters is explained in Section 2.2.) In this method,since the data objects in the argument list are actually copied into prob,they may be deleted immediately after the method returns.There distribution includes several other version of makeData that willnot be described here. In general, the preference is to �x references in probto point to existing arrays of data, rather than copying the data into prob.The calls to makeVariables and makeResiduals in Figure 3 create theobjects that store the problem variables and the residuals that measure theinfeasibility of a given point with respect to the various optimality condi-tions. The object vars contains both primal variables for (2) (includingx) and dual variables (Lagrange multipliers). These variables are namedvars->x, vars->y, and so on, following the naming conventions describedin Section 2.2. The data and methods in the residuals class resids aretypically of interest only to optimization experts. When an approximate so-lution to the problem (2) is found, all data elements in this object will havesmall values, indicating that the point in question approximately satis�esall optimality conditions.The next step is to create the solver object for actually solving the QP.This is performed by means of the following call.GondzioSolver * s = new GondzioSolver(qp, prob);In our example, we then invoke the method s->monitorSelf() to tell thesolver that it should print summary information to the screen as the solveris operating. (If this line is omitted, the solver will operate quietly.)Finally, we invoke the algorithm to solve the problem by means of thecall s->solve(prob,vars, resid). The return value from this routine willbe zero if the solver was able to compute an approximate solution, whichwill be found in the object vars. The solver will return a nonzero valueif it was unable to solve the problem. Negative values indicate that some16

error, such as an out of memory error, was encountered. For a descriptionof the termination criteria of OOQP, and the positive values that might bereturned in ierr, see Section 4.3.One must include certain header �les to obtain the proper de�nitions ofthe classes used. In general, a class de�nition is in a header �le with thesame name as the class, appended with a \.h". For the example in Figure 3,the following lines serve to include all relevant header �les.#include "QpGenData.h"#include "QpGenVars.h"#include "QpGenResiduals.h"#include "GondzioSolver.h"#include "QpGenSparseMa27.h"The OOQP Installation Guide explains how to build an executable usingthe OOQP header �les and libraries.2.4 Use in AMPLOOQP may be invoked within AMPL, a modeling language for specifyingoptimization problems. From within AMPL, one must �rst de�ne the modeland input the data. If the model happens to be a QP, then an optionsolver command within the AMPL code can be used to ensure the use ofOOQP as the solver.An AMPL model �le that may be used to describe a problem of the form(2) without equalities Ax = b is as follows.set I; set J;set QJJ within {J,J}; set CIJ within {I,J};param objadd; param g{J}; param Q{QJJ};param clow{I}; param C{CIJ}; param cupp{I};param xlow{J}; param xupp{J};var x{j in J} >= xlow[j] <= xupp[j];minimize total_cost: objadd + sum{j in J} g[j] * x[j]+ 0.5 * sum{(j,k) in QJJ} Q[j,k] * x[j] * x[k];subject to ineq{i in I} :clow[i] <= sum{(i,j) in CIJ } C[i,j] * x[j] <= cupp[i] ;17

The data for the QP is normally given in a separate AMPL data �le, whichfor the problem (3) is as follows.param objadd := 4 ;param: J : g := col1 1.5 col2 -2 ;param: QJJ : Q :=col1 col1 8 col1 col2 2col2 col1 2 col2 col2 10 ;param xlow := col1 0 col2 0 ;param xupp := col1 20 col2 Infinity ;param: I : clow := row1 2 row2 -Infinity ;param cupp := row1 Infinity row2 6 ;param: CIJ : C :=row1 col1 2 row1 col2 1row2 col1 -1 row2 col2 2 ;Suppose the model �le was named example.mod and the data �le was namedexample.dat. From within the AMPL environment, one would type thefollowing lines to solve the problem and view the solution.model example.mod;data example.dat;option solver ooqp-ampl;solve;display x;The following lines containing the optimal value of x would then be dis-played.x [*] :=col1 0.7625col2 0.475;2.5 Use in MATLABOOQP may be invoked from within the MATLAB environment. Instructionson how to obtain the necessary software may be found in the README-Matlab18

in the OOQP directory.The prototype for the MATLAB function is as follows.[x, gamma, phi, y, z, lambda, pi] = ...ooqp(c, Q, xlow, xupp, A, dA, C, clow, cupp, doPrint)This function will solve the general QP formulation (2), re-expressed herein MATLAB notation.minimize: c' * x + 0.5 * x' * Q * xsubject to: A * x = dAclow <= C * x <= cuppxlow <= x <= xuppThis is the exactly the default QP formulation (2). The vectors and matrixobjects in the argument list should be MATLAB matrices of appropriatesize. Upper or lower bounds that are absent should be set to inf or -inf,respectively. (It is important to use these in�nite values rather than largebut �nite values.)The �nal parameter in the argument list, doPrint, is optional. If present,it should be set to one of the strings \yes," \on," \no," or \o�." If the value is\yes" or \on," then progress information will be printed while the algorithmsolves the problem. If doPrint is absent, the default value \o�" will beassumed.Help is also available within MATLAB. After you have followed theinstruction in README-Matlab and installed the MATLAB interface in thelocal directory or on the MATLAB path, help can by obtained by typinghelp ooqp at the MATLAB prompt.
19

3 Overview of the OOQP Development Frame-workIn this section, we start by describing the layered design of OOQP, whichis the fundamental organizing principle for the classes that make it up.We then discuss the directory structure of the OOQP distribution, and themake�le-based build process that is used to construct executables.3.1 The Three Layers of OOQPOOQP has a layered design in which each layer is built from abstract oper-ations de�ned by the layer below it. We sketch these layers and their chiefcomponents in turn.QP Solver Layer. The top layer of OOQP contains the high-level algo-rithms and heuristics for solving quadratic programming problems. OOQPimplements primal-dual interior-point algorithms, that are motivated by theoptimality (Karush-Kuhn-Tucker) conditions for a QP. We write these con-ditions for the formulation (1) by introducing Lagrange multiplier vectors yand z (for the equality and inequality constraints, respectively) and a slackvector s to yield the following system:c+ Qx�AT y � CT z = 0; (4a)Ax� b = 0; (4b)Cx� s � d = 0; (4c)SZe = 0; (4d)s; z � 0; (4e)where S and Z are diagonal matrices whose diagonal elements are the com-ponents of the vectors s and z, respectively. A primal-dual interior-pointalgorithm �nds a solution to (1) by applying Newton-like methods to thenonlinear system of equations formed by (4a), (4b), (4c), and (4d), con-straining all iterates (xk; yk; zk; sk), k = 0; 1; 2; : : : to satisfy the bounds (4e)strictly (that is, all components of zk and sk are strictly positive for all k).OOQP implements the primal-dual interior point algorithm of Mehro-tra [18] for linear programming, and the variant proposed by Gondzio [13]that includes higher-order corrections. See Section 4.1 below, and the textof Wright [23] for further description of these methods.20

Problem Formulation Layer. Algorithms in the QP solver layer arebuilt entirely from abstract operations de�ned in the problem formulationlayer. This layer consists of several classes each of which represents an objectof interest to a primal-dual interior-point algorithm. The major classes areas follows.Data Stores the data (Q;A;C; c; b; d) de�ning the QP (1), in an economicalformat suited to the speci�c structure of the data and the operationsneeded to perform on it.Variables Contains storage for the primal and dual variables (x; y; z; s) ofthe problem, in a format suited to the speci�c structure of the prob-lem. Also implements various methods associated with the variables,including the computation of a maximum steplength, saxpy opera-tions, and calculation of � = (sTz)=mC .Residuals Contains storage for the residuals|the vectors that indicate in-feasibility with respect to the KKT conditions|along with methodsto calculate these residuals from formulae such as (4a{4d). This classalso contains methods for performing the projection operations neededby the Gondzio approach, calculating residual norms, and calculatingthe current duality gap (see Section 5.2.3 for a discussion of the dualitygap.)LinearSystem Contain methods to factor the coe�cient matrix used inthe Newton-like iterations of the QP solver and methods that use theinformation from the factorization to solve the linear systems for dif-ferent right-hand sides. The systems that must be solved are describedin Section 4.1.To be concrete in our discussion, we have referred to the QP formula-tion (1) given in the introduction, but the problem formulation layer pro-vides abstract operations suitable to many di�erent problem formats. Forinstance, the quadratic program that arises from classical support vectormachine problems ismin kwk2 + �eTu; subject to D(Vw � �e) � e� u; v � 0; (5)where V is a matrix of empirical observations, D is a diagonal matrix whoseentries are �1, � is a positive scalar constant, and e is a constant vectorof all ones. In OOQP's implementation of the solver for this problem, weavoid expressing the problem in the form (2) by forming the matrices Q and21

C explicitly. Rather, the problem formulation layer provides methods toperform operations involving Q, C, and the other data objects that de�nethe problem. The QP solver layer implements a solver by calling thesemethods, rather than operating on the data and variables explicitly.Since a solver for general problems of the form (2) is useful in manycircumstances, OOQP provides a solver for this formulation, as well as forseveral specialized formulations such as (5). Users may readily specializethe abstract operations in this layer and thereby create solvers that arespecialized to yet more problem formulations. Section 5 gives instructionson how to develop specialized implementations of this class.Linear Algebra Layer. Many of the linear algebra operations and datastructures in OOQP are shared by several problem types. For instance,regardless of the particular QP formulation, the Variable, Data, and Lin-earSystems classes will need to perform saxpy, dot product, and norm calcu-lations on vectors of doubles. Furthermore, most sparse problems will needto store matrices in a Harwell-Boeing format. Reimplementing the linearalgebra operations in each of the problem-dependent classes would resultin an unacceptable explosion in code size and complexity. The solution weimplemented in OOQP is to de�ne another layer that provides the linearalgebra functionality needed by many di�erent problem formulations. Anadded advantage is that by con�ning linear algebra to its own layer, we canimplement solvers for distributed platforms with little change in the code.The linear algebra classes are somewhat a di�erent from the classes inthe QP solver and problem formulation layers. The two topmost layers ofOOQP consist of small, abstract interfaces with no behavior whatsoever.We have provided concrete implementations based on these interfaces, buteven our concrete classes tend to contain only a small number of methods.Hence, these classes are easy to understand and easy to override.By contrast, implementations of linear algebra classes such as DoubleMatrixand OoqpVector must supply a relatively large amount of behavior. Thiscomplexity appears to be inevitable. The widely used BLAS library, whichis meant to contain only the most basic linear algebra operations, consistsof forty-nine families of functions and subroutines. As well as de�ning op-erations, the linear algebra classes also have to handle the storage of theircomponent elements.Our approach to the linear algebra classes is to identify and provide asmethods the basic operations that are used repeatedly in our implementa-tions of the problem formulation layer. As much as possible, we use existing22

packages such as BLAS [16], LAPACK [1] and PETSc [2, 3, 4] to supply thebehavior needed to implement these methods. Since our goal is simplicity,we provide only the functionality that we use. We are not striving for acomplete linear algebra package but for a package that may be convenientlyused in the setting of interior point optimization algorithms. For this reason,many BLAS operations are not provided; and certain operations commonin interior-point algorithms, but rare elsewhere, are given equal status withBLAS routines.3.2 OOQP Directory Structure and Build ProcessThe OOQP installation process will generate compiled libraries in the direc-tory lib and a directory named include containing header �les. These li-braries and headers may be copied into a more permanent system-dependentlocation. Users who wish to call OOQP code from within their own C orC++ programs may use any build process they wish to compile and linkagainst the installed headers and libraries.Users who wish to do more complex development with OOQP may �nd itmore convenient to work within the source directory src and use the OOQPbuild system to compile their executables. OOQP has a modular directorystructure in which source and header �les that logically belong together areplaced in their own subdirectory of src. For example, code that implementsthe solver for the formulation (2) can be found in src/QpGen, while codethat de�nes classes for dense matrices and dense linear equation solvers canbe found in src/DenseLinearAlgebra.Any system of building executables in a complex project is necessar-ily complex. This is especially true for object-oriented code, as the mostcommon methods for building executables are designed for use with proce-dural (rather than object-oriented) languages. In OOQP, we have designeda relatively simple process but one that requires some e�ort to learn andunderstand. Users who intend to develop a customized solver for a new QPformulation or to replace the linear algebra subsystem need to understandsomething of this process, and this section is aimed primarily at them. Userswho do not have an interest in the details of the build process may safelyskip this section.OOQP is built by using the GNU version of the standard Unix make util-ity. GNU make is freely and widely available, yields predictable performanceacross a wide variety of platforms, and has a number of useful features ab-sent in many vendor-provided versions of make. In this section, we assumethat the user has a basic understanding of how to write make�les, which are23

the �les used as input to the make utility.OOQP uses a configure script, generated by the GNU Autoconf utility,to set machine-dependent variables within the make�les that appear in var-ious subdirectories. In the top-level directory, OOQP, configure generatesthe global make�le GNUmakefile from an input �le named GNUmakefile.in.The user who wishes to modify this make�le should alter GNUmakefile.inand then re-run configure to obtain a new GNUmakefile, rather than al-tering GNUmakefile directly. (Users will seldom have cause to alter thismake�le or any other �le under the control of Autoconf but should be awareof the fact that some make�les are generated in this way.)All subdirectories of the src that contain C++ code also contain a �lenamed Makefile:inc. We give an example of such a �le from the directorysrc/QpExample, which contains an example problem formulation based di-rectly on (1). In the src/QpExample directory, the Makefile.inc reads asfollows.QPEXAMPLEDIR = $(srcdir)/QpExampleQPEXAMPLEOBJ = \$(QPEXAMPLEDIR)/QpExampleData.o \$(QPEXAMPLEDIR)/QpExampleVars.o \$(QPEXAMPLEDIR)/QpExampleResids.o \$(QPEXAMPLEDIR)/QpExampleDenseLinsys.o \$(QPEXAMPLEDIR)/QpExampleDense.oqpexample_dense_gondzio_OBJECTS = \$(QPEXAMPLEDIR)/QpExampleGondzioDriver.o \$(QPEXAMPLEOBJ) \$(libooqpgondzio_STATIC) \$(libooqpdense_STATIC) $(libooqpbase_STATIC)This �le contains three make�le variable de�nitions, specifying the subdirec-tory name (QPEXAMPLEDIR), the list of object �les speci�c to the SVM solver(QPEXAMPLEOBJ), and the full list of object �les that must be linked to createthe executable for the solver (qpexample dense gondzio OBJECTS). Everymodule of OOQP contains a similar Makefile.inc �le to de�ne variables rel-evant to that module. (Another example is the variable libooqpgondzio STATIC,used in the de�nition of qpexample dense gondzio OBJECTS, which is de-�ned in src/QpSolvers/Makefile.inc.) Note that the variable srcdir inthis example refers to the OOQP source directory and does not need to bede�ned in src/QpExample/Makefile.inc.24

Some subdirectories of the src that contain C++ code also contain a �lenamed MakefileTargets:inc. This �le de�nes targets relevant to the buildprocess. An example of such a �le is src/QpExample/MakefileTargets.inc,which is as follows.qpexample-dense-gondzio.exe: $(qpexample_dense_gondzio_OBJECTS)$(CXX) -o $@ $(CXXFLAGS) $(LDFLAGS) $(LIBS) \$(qpexample_dense_gondzio_OBJECTS) $(BLAS) $(FLIBS)The qpexample-dense-gondzio.exe target speci�es the dependency of theexecutable on the object list that was de�ned in the corresponding Makefile.inc�le.In using Makefile.inc and MakefileTargets.inc �les, we separatetarget de�nitions from variable de�nitions because unpredictable behaviorcan occur if the targets are read before all variables are de�ned.When a user invokes GNU make from the OOQP directory, the utilityensures that� all variables de�ned in �les named Makefile.inc in direct subdirec-tories of the src directory are made available in the build;� all targets de�ned in similarly located �les named MakefileTargets.incare also made available;� direct subdirectories of the src directory that contain a �le that isnamed Makefile.inc are placed on the path on which to search forheader (.h) �les.Thus, when the GNU make utility is named gmake, one may build the exe-cutable qpexample-dense-gondzio.exe by typinggmake qpexample-dense-gondzio.exefrom the command line from within the OOQP directory.The make�le system can also be used to perform dependency checking.Typinggmake dependwill cause the Unix makedepend utility to generate dependency informationfor all source �les in direct subdirectories of the src directory that contain a�le named Makefile.inc. This dependency information will then be used inthe next build to determine whether source �les are up-to-date with respectto their included header �les. 25

We emphasize that this process works only on direct subdirectories ofthe src directory. Files named Makefile.inc in more deeply nested sub-directories will not, without extra e�ort, be recognized. We deliberatelyrestricted the search to direct subdirectories of the source directory in orderto make the build process more predictable.User-de�ned Makefile.inc and MakefileTargets.inc need be no morecomplicated than the example �les given above. Some of the instances ofthese �les that are included in the OOQP distribution contain more vari-ables and targets than those shown above because they need to accomplishadditional tasks. Moreover, they may contain conditional statements to dis-able certain targets, if these targets depend on external packages that arenot present on the computer at the time of the build. These advanced issuesmay be ignored by all but developers of OOQP.Finally, we mention that some external packages, such as PETSc, requirespecializations to the global make�le. When building executables that usethese packages, one cannot use the default global make�le GNUmakefile. Tobuild the executable qpbound-petsc-mehrotra.exe, for instance, one musttype the following line.gmake -f PetscMakefile qpbound-petsc-mehrotra.exeWe may include other such specialized make�les in the OOQP distributionin the future. While inclusion of these �les is a minor inconvenience, weconsider it important to isolate changes to the global make�le in this manner,so that miscon�guration of a certain package is less likely to cause problemsin an unrelated build.
26

4 Working with the QP SolverIn this section, we focus on the top layer of OOQP, the QP solver.4.1 Primal-Dual Interior-Point AlgorithmsWe start by giving some details of the primal-dual interior-point algorithmsthat are implemented in the Solver class in the OOQP distribution. Bydesign, the code that implements these algorithms is short, and one can seethe correspondence between the code and the algorithm description below.Therefore, users who want to modify the basic algorithm will be able to doso after reading this section.A primal-dual algorithm seeks variables (x; y; z; s) that satisfy the opti-mality conditions for the convex quadratic program (1), introduced in Sec-tion 3.1 but repeated here for convenience.c+ Qx�AT y � CT z = 0; (6a)Ax� b = 0; (6b)Cx� s � d = 0; (6c)SZe = 0; (6d)s; z � 0: (6e)The complementarity measure � de�ned by� = zT s=mc (7)(wheremc is the number of rows in C) is important in measuring the progressof the algorithm, since it measures violation of the complementarity condi-tion zT s = 0, which is implied by (6d). Infeasibility of the iterates withrespect to the equality constraints (6a), (6b), and (6c) also makes up partof the indicator of nonoptimality.The OOQP distribution contains implementations of two quadratic pro-gramming algorithms: Mehrotra's predictor-corrector method [19] and Gondzio'smodi�cation of this method that uses higher-order corrector steps [13]. (Seealso [23, Chapter 10] for a discussion of both methods.) These algorithmshave proved to be the most e�ective methods for linear programming prob-lems and in our experience are just as e�ective for convex quadratic pro-gramming. Mehrotra's algorithm can be speci�ed as follows.Algorithm MPC (Mehrotra Predictor-Corrector)Given starting point (x; y; z; s) with (z; s) > 0, and parameter � 2 [2; 4];27

repeatSet � = zTs=mc.Solve for (�xa�;�ya�;�za�;�sa�):26664 Q �AT �CT 0A 0 0 0C 0 0 �I0 0 S Z 3777526664 �xa��ya��za��sa� 37775 = �26664 rQrArCZSe 37775 ; (8)where S = diag(s1; s2; : : : ; smc); (9a)Z = diag(z1; z2; : : : ; zmc); (9b)rQ = Qx+ c�AT y � CT z; (9c)rA = Ax� b; (9d)rC = Cx� s� d: (9e)Compute �a� to be the largest value in (0; 1] such that(z; s) + �(�za� ;�sa�) � 0:Set �a� = (z + �a��za�)T (s+ �a��sa�)=mC.Set � = (�a�=�)� .Solve for (�x;�y;�z;�s):26664 Q �AT �CT 0A 0 0 0C 0 0 �I0 0 S Z 3777526664 �x�y�z�s 37775 = �26664 rQrArCZSe� ��e+ �Za��Sa�e 37775 ;(10)where �Za� and �Sa� are de�ned in an obvious way.Compute �max to be the largest value in (0; 1] such that(z; s) + �(�z;�s) � 0:Choose � 2 (0; �max) according to Mehrotra's step length heuristic.Set 28

(x; y; z; s) (x; y; z; s)+ �(�x;�y;�z;�s):until the convergence or infeasibility test is satis�ed.The direction obtained from (10) can be viewed as an approximatesecond-order step toward a point (x+; y+; z+; s+) at which the conditions(6a), (6b), and (6c) are satis�ed and, in addition, the pairwise productsz+i s+i are all equal to ��. The heuristic for � yields a value in the range(0; 1), so the step usually produces a reduction in the average value of thepairwise products from their current average of �.Gondzio's approach [13] follows the Mehrotra algorithm in its compu-tation of directions from (8) and (10). It may then go on to enhance thesearch direction further by solving additional systems similar to (10), withvariations in the last mC components of the right-hand side. Successivecorrections attempt to increase the steplength � that can be taken alongthe �nal direction, and to bring the pairwise products sizi whose values areeither much larger than or much smaller than the average into closer corre-spondence with the average. The maximum number of corrected steps wecalculate is dictated by the ratio of the time taken to factor the coe�cientmatrix in (10) to the time taken to use these factors to produce a solutionfor a given right-hand side. When the marginal cost of solving for an ad-ditional right-hand side is small relative to the cost of a fresh factorization,and when the corrections appear to be improving the quality of the stepsigni�cantly, we allow more correctors to be calculated, up to a limit of 5.The algorithms implemented in OOQP use the step length heuristic de-scribed in Mehrotra [19, Section 6], modi�ed slightly to ensure that the samestep lengths are used for both primal and dual variables.4.2 Monitoring the Algorithm: The Monitor ClassOOQP can be used both for solving a variety of stand-alone QPs and forsolving QP subproblems as part of a larger algorithm. Di�erent terminationcriteria may be appropriate to each context. For a simple example, thecriteria used to declare success in the solution of a single QP would typicallybe more stringent than the criteria for a QP subproblem in a nonlinearprogramming algorithm, in which we can a�ord some inexactness in thesolution. Accordingly, we have designed OOQP to be
exible as to thede�nition and application of termination criteria, and as to the way in whichthe algorithm's progress is monitored and communicated to the user. In29

some instances, a short report on each interior-point iteration is desirable,while in others, silence is more appropriate. In OOQP, an abstract Monitorclass monitors the algorithm's progress, while an abstract Status class teststhe termination conditions. We describe the Monitor class in this section,and the Status class in Section 4.3 below.Our design assumes that each algorithm in the QP solver layer of the codehas its own natural way of monitoring the algorithm and testing termination.Accordingly, the two derived Solver classes in the OOQP distribution eachcontain a defaultMonitormethod to print out a single line of information tothe standard output stream at each iteration, along with a suitable messageat termination of the algorithm. The prototype of this method is as follows.void Solver::defaultMonitor(Data * data, Variables * vars,Residuals * resids,int i, double mu,int status_code, int stage)The data argument contains the problem data, while vars and resids con-tain the values of the variables and residuals at the current iterate, whichtogether depict the status of the algorithm. (See Sections 3.1 and 5 forfurther information about these objects.) The variable i is the current it-eration number and mu is the complementarity measure (7). The integerstatus code indicates the status of the algorithm at termination, if termi-nation has occurred; see Section 4.3 below. The stage argument indicatesto defaultMonitor what type of information it should print. In our im-plementations, the values stage=0 and stage=1 cause the routine to printout a single line containing iteration number, the value of �, and the resid-ual norm. The value stage=1 is used after termination has occurred, andadditionally causes a message about the termination status to be printed.One mechanism available to the user who wishes to alter the monitoringprocedure is to create a new subclass of Solver that contains an imple-mentation of defaultMonitor that overrides the existing implementation.This is the simplest way to proceed and will su�ce in many circumstances.However, it has a disadvantage for users who work with several di�erentimplementations of Solver|versions that implement di�erent primal-dualalgorithms, for instance, or are customized to di�erent applications|in thatthe new monitoring routine cannot be shared among the di�erent QP solvers.A subclass of each QP solver that contains the overriding implementationof defaultMonitor would need to be created, resulting in a number of newleaves on the class tree. A second disadvantage is that some applications may30

require several monitor processes to operate at once, for example, one pro-cess like the defaultMonitor described above that writes minimal outputto standard output, and another process that writes more detailed informa-tion to a log �le. It is undesirable to create a new Solver subclass for eachdi�erent set of monitor requirements.In OOQP, we choose delegation, rather than subclassing, as our mech-anism for customizing the monitor process. Delegation is a technique inwhich the responsibility for taking some action normally associated with aninstance of a given class is delegated to some other object. In our case,although the Solver class would normally be responsible for displayingmonitor information, we delegate responsibility to an associated instanceof the Monitor class. The Solver class contains methods for establishingits defaultMonitor method as one of the monitor procedures called by thecode and for adding monitor procedures supplied by the user.The abstract de�nition of the Monitor class can be found in the OOQPdistribution at src/Abstract/OOQPMonitor.h, along with the de�nitions ofseveral subclasses. The only method of interest in the Monitor class is thedoIt method, which causes the object to perform the operation that is itssole reason for being. Making these objects instances of a class rather thansubroutines tends to be more natural in the C++ language and makes itfar simpler to handle any state information that instances of Monitor maywish to keep between calls to doIt.The doIt method has the following prototype, which is identical to thedefaultMonitor method described above.void OoqpMonitor::doIt(Solver * solver, Data * data,Variables * vars, Residuals * resids,int i, double mu,int status_code, int stage);Users who wish to implement their own monitor procedure should create asubclass of OOQPMonitor, for example by making the following de�nition:class myMonitor : public OOQPMonitor {public:virtual void doIt(Solver * solver, Data * data,Variables * vars, Residuals * resids,int i, double mu,int status_code, int level);}; 31

and then implementing their own version of the doIt method. Their codethat creates the instance of the Solver class and uses it to solve the QPshould contain the following code fragments:OoqpMonitor * usermon = new myMonitor;...qpsolver->monitorSelf();qpsolver->addMonitor(usermon);The �rst statement creates an instance of the subclass myMonitor. The sec-ond and third statements should appear after the instance qpsolver of theSolver class has been created but before the method qpsolver->solve()has been invoked. The call to monitorSelf statement ensures that thedefaultMonitor method is invoked at each interior-point iteration, whilethe call to addMonitor ensures that the user-de�ned monitor is also in-voked. Users who wish to invoke only their own monitor procedure and notthe defaultMonitor method can omit the second statement. The solver isresponsible for deleting any monitors give to it via the addMonitor method.The default behavior for an instance of Solver is to display no monitorinformation.4.3 Checking Termination Conditions: The Status ClassIn OOQP, the defaultStatusmethod of the Solver class normally handlestermination tests. However, OOQP allows delegation of these tests to an in-stance of the Status class, in much the same way as the monitor procedurescan be delegated as described above. Before describing how to replace theOOQP termination tests, let us describe the termination tests that OOQPuses by default.The defaultStatusmethod of the Solver class uses termination criteriasimilar to those of PCx [5]. To discuss these criteria, we again refer to theproblem formulation (1) (discussed in Section 4.1) and use (xk; yk; zk; sk) todenote the primal-dual variables at iteration k, and �k def= (zk)Tsk=mC todenote the corresponding value of �. Let rkQ, rkA, and rkC be the values ofthe residuals at iteration k, and let gapk be the duality gap at iteration k,which may be de�ned for formulation (1) by the formula (16) below. Wede�ne the quantity �k as follows,�k def= k(rkQ; rkA; rkC)k1 + gapkk(Q;A;C; c; b; d)k1 ;32

where the denominator is simply the element of largest magnitude in all thedata quantities that de�ne the problem (1). Note that �k = 0 if and only if(xk; yk; zk; sk) is optimal.Given parameters tol� and tolr (both of which have default value 10�8),we declare the termination status to be SUCCESSFUL TERMINATION when�k � tol�; k(rkQ; rkA; rkC)k1 � tolrk(Q;A;C; c; b; d)k1: (11)We declare the status to be INFEASIBLE if�k > 10�8 and �k � 104 min0�i�k �i: (12)(In fact, since this is not a foolproof test of infeasibility, the true meaningof this status is \probably infeasible.") Status UNKNOWN is declared if thealgorithm appears to be making unacceptably slow progress, that is,k � 30 and min0�i�k �i � 12 min1�i�k�30�i; (13)or if the ratio of infeasibility to the value of � appears to be blowing up,that is, k(rkQ; rkA; rkC)k1 > tolrk(Q;A;C; c; b; d)k1 (14a)and k(rkQ; rkA; rkC)k1=�k � 108k(r0Q; r0A; r0C)k1=�0: (14b)We declare status MAX ITS EXCEEDED when the number of iterations exceedsa speci�ed maximum; the default is 100. If none of these conditions issatis�ed, we declare the status to be NOT FINISHED.Users who wish to alter the termination test may simply create a subclassof Solver with their own implementation of defaultStatus. Alternatively,they may create a subclass of the Status class, whose abstract de�nitioncan be found in the �le src/Abstract/Status.h. The sole method in theStatus class is doIt, which has the following prototype.int Status::doIt(Solver * solver, Data * data,Variables * vars, Residuals * resids,int i, double mu, int stage);The parameters to the doIt method have the same meaning as the cor-respondingly named parameters of the OOQPMonitor::doIt method. Thereturn value of the Status::doItmethod determines whether the algorithmcontinues or terminates. The possible values that may be returned are asfollows. 33

enum TerminationCode{ SUCCESSFUL_TERMINATION = 0,NOT_FINISHED,MAX_ITS_EXCEEDED,INFEASIBLE,UNKNOWN};The meanings of these return codes in the defaultStatus method are de-scribed above. Users are advised to assign similar meanings in their special-ized implementation.Unlike the case of monitor procedures, it does not make sense to havemultiple status checks in operation during execution of the interior-point al-gorithm; exactly one such check is required. Users who wish to use thedefaultStatus method supplied with the OOQP distributions need donothing; the default behavior of an instance of the Solver class is to callthis method. Users who wish to supply their own method can create theirown subclass of the Status class as follows.class myStatus : public Status {public: virtual void doIt(Solver * solver, Data * data,Variables * vars, Residuals * resids,int i, double mu, int stage);};Then, they can invoke the useStatus method after creating their instanceof the Solver class, to indicate to the solver object that it should use theuser-de�ned status-checking method. The appropriate lines in the drivercode would be similar to the following.MyStatus * userstat = new myStatus;...qpsolver->useStatus(userstat);The solver is responsible for deleting any Status objects given to it via theuseStatus method. 34

5 Creating a New QP FormulationUsers who wish to construct a solver for a class of QPs with a particularstructure not supported in the OOQP distribution may consider using theframework to build a new solver that represents and manipulates the prob-lem data and variables in an economical, natural, and e�cient way. In thissection, we describe the major classes that must be implemented in order todevelop a solver for a new problem formulation.Most of the e�ort in developing a customized solver for a new class ofstructured QPs is in reimplementing the classes in the problem formulationlayer. As described in Section 3, this layer consists of �ve main classes|Data, Variables, Residuals, LinearSystem, and ProblemFormulation|that contain data structures to store the problem data, variables, and residu-als, and methods to perform the operations that are required by the interior-point algorithms.As discussed in Section 4.1, the core algebraic operation in an interior-point solver is the solution of a Newton-like system of linear equations. Forformulation (1), the general form of this system is as follows26664 Q �AT �CT 0A 0 0 0C 0 0 �I0 0 S Z 3777526664 �x�y�z�s 37775 = �26664 rQrArCrz;s 37775 ; (15)where rQ, rA, and rC are de�ned in equations (9c), (9d), and (9e), and rz;sis chosen in a variety of ways, as described in Section 4. Most of the objectsthat populate a problem formulation layer can be found in this system. TheVariables in formulation (1) break down naturally into four components x,y, z, and s. Likewise, there are naturally four components to the Residualsof this formulation. For other problem formulations, such as SVM (5), thispartitioning of the variables is not natural, and a scheme more suited to theparticular formulation is used instead. However, to focus our discussion ofthe implementation of the problem formulation layer in this section, we willcontinue to refer to the particular formulation (1) and the system (15). Theimplementations of (1) discussed in this section may be found in the OOQPdistribution in directory src/QpExample.In reimplementing the problem formulation layer for a new QP structure,it may be helpful to make use of the classes from the linear algebra layer. Asmentioned in Section 3, this layer contains classes for storing and operatingon dense matrices, sparse matrices, and vectors. These classes can be used35

as building blocks for implementing the more complex storage schemes andarithmetic operations needed in the problem formulation layer.We �rst elaborate on the use of the linear algebra layer and then describein some detail the process of implementing the �ve classes in the problemformulation layer.5.1 Linear Algebra OperationsMost implementations of the problem formulation layer that appear in theOOQP distribution (the QpGen, QpExample, QpBound, and Huber, and Svmimplementations) all are built using the objects in OOQP's linear algebralayer. The classes in this layer represent objects such as matrices and vectors,and they provide methods that are especially useful for developing interiorpoint QP solvers. By basing our problem formulation layer on the abstractoperations of the linear algebra layer we gain another signi�cant advantage:we can use the same problem formulation code for several quite varied rep-resentations of vectors and matrices. For instance, the implementation ofthe problem formulation layer for QPs with simple bounds is independentof whether the Hessian matrix is represented as a dense array on a singleprocessor or as a sparse array distributed across several processors.Use of OOQP's linear algebra layer in implementing the problem for-mulation layer is not mandatory. Users are free to de�ne their own matrixand vector data structures and implement their own linear algebra opera-tions (inner products, saxpys, factorizations, and so on) without referring toOOQP's linear algebra objects at all. The authors of OOQP recognize thatthere is a learning curve associated with the use of the abstract operations inOOQP's linear algebra objects and that the implementation might proceedmore quickly if users de�ne their own linear algebra in terms of concreteoperations on concrete data.For maximum e�ectiveness, we recommend a compromise approach. Whilethe base classes for our linear algebra layer are de�ned only in terms of ab-stract operations, several of the classes (such as SimpleVector) may alsobe used concretely. Users can start by de�ning their problem formulationin terms of these simple classes but de�ne their own concrete operations onthe data. Later, they can replace their concrete operations by the abstractmethods supplied with these classes. Finally, having gained pro�ciency inthe use of these classes, they may then replace the entire class with a moreappropriate one. Section 6 is a short tutorial on the linear algebra layer thatcan be consulted by those who wish to use the layer in this way.36

5.2 Specializing the Problem Formulation LayerWe now detail how to implement the various classes in the problem formu-lation layer.5.2.1 Specializing DataThe purpose of the Data class is to store the data de�ning the problem,in some appropriate format, to provide methods for performing operationswith the data matrices (for example, matrix multiplications or insertion ofproblem matrices into the larger matrices of the form (8) or (10)), for cal-culating some norm of the data, for �lling the data structures with problemdata (read from a �le, for instance, or passed from a modeling languageor MATLAB), for printing the data, and for generating random probleminstances for testing and benchmarking purposes.Since both the data structures and the methods implemented in Datadepend so strongly on the structure of the problem, the parent class isalmost empty. It includes only two pure virtual functions, datanorm (oftype double) and print, whose implementation must appear in any derivedclasses.A derived class of Data for the formulation (1) in which the problem datais dense would include storage for the vectors c, b, and d as arrays of doubles;storage for A and C as two-dimensional arrays of doubles; and storage forthe lower triangle of the symmetric matrix Q. In our implementation of thederived class QpExampleData, we have provided methods for multiplying bythe matrices Q, A, and C and for copying the data into a larger structuressuch as the matrix in (15). We �nd it convenient to provide methods like thisfor manipulating the data in our QpExampleData class, rather than havingcode from other problem formulation classes manipulate the data structuresdirectly; the extra generality that the added layer of encapsulation a�ordshas sometimes proven useful.Consider now the two pure virtual functions datanorm and print. Onereasonable implementation of datanorm for the formulation (1) would simplyreturn the magnitude of of the largest element in the matrices Q, A, and C,and the vectors c, b, and d that de�ne (1). The implementation of printmight print the data objects Q, A, C, c, b, and d to standard output in someuseful format. Although not compulsory, we might also de�ne a routinedatarandom to generate an instance of (1), given user-de�ned dimensionsn, mA, and mC , and possibly a desired level of sparsity for the matrices.Naturally, this method should take care that Q is positive semide�nite.37

The derived Data class might also contain one or more implementationsof a datainput method that allow the user to de�ne the problem data. Wecould, for instance, have one implementation of datainput that reads thedata in some simple format from ascii �les and another implementation thatreads a �le in MPS format, appropriately extended for quadratic program-ming (Maros and M�esz�aros [17]). Since the MPS format allows for boundsand for constraints of the form lc � Cx � uc, the latter implementationgenerally would need to perform transformations to pose the problem in theform (1). (The data from a MPS �le is more naturally represented by our\general" QP formulation (2).)5.2.2 Specializing VariablesInstances of Variables class store the problem variables ((x; y; z; s) in thecase of (1)) in whatever format is appropriate to the problem structure.The class includes a variety of methods essential in the implementation ofAlgorithm MPC. Most of them de�ned as pure virtual functions, becausethey strongly depend on the structure of the problem.We now sketch the main methods for the Variables class, illustratingeach one by specifying its implementation for the formulation (1).mu: Calculate the complementarity gap: � = zTs=mC .mustep: Calculate the complementarity gap that would be obtained froma step of length � along a speci�ed direction from the current point.For (1), given the search direction (�x;�y;�z;�s) (supplied in anargument of type Variables) and a positive scalar �, this methodwould calculate (z + ��z)T (s+ ��s)=mC :negate: Multiply the current set of variables by �1. For (1), we wouldreplace (x; y; z; s) by �(x; y; z; s).saxpy: Given another set of variables and a scalar, perform a saxpy opera-tion with the current set of variables. For (1), we would pass a secondinstance of a Variables class containing (x0; y0; z0; s0), together withthe scalar � as arguments, and perform the replacement(x; y; z; s) (x; y; z; s) + �(x0; y0; z0; s0):38

stepbound: Calculate the longest step in the range [0; 1] that can betaken from the current point in a speci�ed direction without violat-ing nonnegativity of the complementary variables. For (1), the argu-ment would be the direction (x0; y0; z0; s0) (stored in another instance oftheVariables class), and this function would return the largest valueof � in [0; 1] such that the condition (z + �z0; s+ �s0) � 0 is satis�ed.findBlocking: Similar to stepbound but returns additional information.This method identi�es separately the maximum steps that can betaken in the primal and dual variables, identi�es the components ofthe variable and step vectors that limit the step, and indicates whetherit was the primal component or the dual component that limited thestep. In the case of (1), findBlocking would return the largest valueof �p in [0; 1] such that s + �ps0 � 0; the values of sip and s0ip , whereip is the component index for which sip + �ps0ip = 0; the largest valueof �d in [0; 1] such that z + �dz0 � 0, and the values of zid and z0id ,where id is the component index for which zid + �dz0id = 0interiorPoint: Set all components of the complementary variables tospeci�ed positive constants � and �. In the case of (1), we would sets �e and z �e, where e is the vector whose elements are all 1.shiftBoundVariables: Add speci�ed positive constants � and � to thecomplementary variables. For (1), this method would perform thereplacements s s+ �e and z z + �e.print: Print the variables in some intelligible problem-dependent format.copy: Copy the data from one instance of the Variables class into another.onenorm, infnorm: Compute the `1 and `1 norms of the variables. For(1), these quantities would be k(x; y; z; s)k1 and k(x; y; z; s)k1, respec-tively.The usefulness of some of these methods in implementing AlgorithmMPC is obvious. For instance, saxpy is used to take a step along the even-tual search direction; stepbound is used to compute �a� and �max; mustep isused to compute �a� . The methods interiorPoint and shiftBoundVariablescan be used in the heuristic to determine the starting point, while findBlockingplays an important role in Mehrotra's heuristic for determining the steplength. 39

5.2.3 Specializing ResidualsThe Residuals class calculates and stores the quantities that appear onthe right-hand side of the linear systems that are solved at each iterationof the primal-dual method. These residuals can be partitioned into twofundamental categories: the components arising from the linear equations inthe KKT conditions, and the components arising from the complementarityconditions. For the formulation (1), the components rQ, rA, and rC (whicharise from KKT linear equations (9c), (9d), and (9e)) belong to the formerclass, while rz;s belongs to the latter. As above, we describe the roles of themain methods in the Residuals class with reference to the formulation (1).calcresids: Given a Data object and a Variables object, calculate theresidual components arising from the KKT linear equations. For (1),this method calculates rQ, rA, and rC using the formulae (9c), (9d),and (9e), respectively.dualityGap: Calculate the duality gap, which we de�ne for the formulation(1) as follows:gapk def= (xk)TQxk � bTyk + cTxk � dT zk: (16)See the discussion below for guidance in formulating an expression forthis parameter.residualNorm: Calculate the norm of the components arising from theKKT linear equations. For (1), this method returns k(rQ; rA; rC)k forsome norm k � k.clear r1r2: Zero the components arising from the KKT linear equations.(Gondzio's method requires the solution of linear equations in whichthese residual components are replaced by zeros.)clear r3: Set the complementarity components to zero. In the case of (1),for which the general form of the linear system is (15), this operationsets rz;s 0. (This operation is needed only in Gondzio's algorithm.)add r3 xz alpha: Given a scalar � and a Variables class, add a comple-mentarity term and a constant to each of the complementarity com-ponents of the residual vector. For (1), given variables (x; y; z; s), wewould set rz;s rz;s + ZSe+ �e;40

where Z and S are the diagonal matrices constructed from the z ands variables.set r3 xz alpha: As for add r3 xz alpha, but overwrite the existing valueof rz;s; that is, set rz;s ZSe+ �.project r3: Perform the projection operation used in Gondzio's methodon the rz;s component of the residual, using the scalars �min and �max.As discussed in Section 4.3, the residualNorm and dualityGap func-tions are used in termination and infeasibility tests. Users familiar withoptimization theory will recognize the concept of the duality gap and willalso recognize that the formula xTQx � bTy + cTx � dTz used in (16) isone of a number of expressions that are equivalent when the residuals rQ,rA, and rC are all equal to zero. One such equivalent expression is the for-mula sTz, used in the de�nition of � in the Variables class. We �nd ituseful, however, to use a de�nition of the duality gap from which the slackvariables have been eliminated and all the linear equalities in the KKT con-ditions have been taken into account. Such a de�nition can be obtainedby starting with the de�nition of � and successively substituting from eachof the KKT conditions. For the case of (1), we start with sT z, substitutefor s from the equation Cx � s � d = 0 (see (4c)) to obtain zT (Cx � d),then substitute for CTz from c+Qx�AT y � CTz = 0 (see (4a)) to obtaincTx + xTQx� xTAy � dTz, and �nally substitute for Ax from Ax � b = 0(see (4b)) to obtain the �nal expression.In Algorithm MPC, the method set r3 xz alpha is called with the cur-rent Variables and � = 0 to calculate the right-hand side for the a�ne-scaling system (8). Once � has been determined and the a�ne-scaling stepis known, add r3 xz alpha is called with � = ��� and the Variables in-stance that contains the a�ne-scaling step, to add the necessary terms tothe rz;s component to obtain the system (10).5.2.4 Specializing LinearSystemAs mentioned above, major algebraic operations at each interior-point iter-ation are solutions of linear systems to obtain the predictor and correctorsteps. For the formulation (1), these systems have the form (15). Such sys-tems need to be solved two to six times per iteration, for di�erent choicesof the right-hand side components but the same coe�cient matrix. Accord-ingly, it makes sense to logically separate the factor method that operates41

only on the matrix and the solve method that operates on a speci�c right-hand side.We use the term \factor" in a general sense, to indicate the part of thesolution process that is independent of the right-hand side. The factormethod could involve certain block-elimination operations on the coe�cientmatrix, together with an LU , LDLT , or Cholesky factorization of a re-duced system. Alternatively, when we use an iterative solver, the factoroperation could involve computation of a preconditioner. The factor classmay need to include storage|for a permutation matrix, for triangular fac-tors of a reduced system, or for a preconditioner|for use in subsequentsolve operations. We use the term \solve" to indicate that part of the so-lution process depends on the speci�c right-hand side. Usually, the resultsof applying methods from the factor class are used to facilitate or speedthe process. Depending on the algorithm we employ, the solve methodcould involve triangular back-and-forward substitutions, matrix-vector mul-tiplications, applications of a preconditioner, and/or permutation of vectorcomponents.Both factor and solve are pure virtual functions; their implementationis left to the derived class because they depend entirely on the problemstructure. For problems with special structure, the factor method is theone in OOQP that gives the most scope for exploitation of the structureand for computational savings over naive strategies. The SVM formulationis one case in which an appropriate implementation of the factor class yieldssigni�cant savings over an implementation that is not aware of the structure.Another instances in which an appropriate implementation of factor canproduce large computational savings include the case in which Q, A, andC have a block-diagonal structure, as in optimal control problems, allowing(17a) to be reordered and solved with either a banded matrix factorizationroutine or a discrete Riccati substitution (Rao, Wright, and Rawlings [21]).We now describe possible implementations of factor for the formulation(1). Direct factorization of the matrix in (15) is not e�cient in generalas it ignores the signi�cant structure in this system|the fact that S andZ are diagonal and the presence of a number of zero blocks. Since thediagonal elements of Z and S are strictly positive, we can do a step of blockelimination to obtain the following equivalent system:264 Q AT CTA 0 0C 0 �Z�1S 375264 �x��y��z 375 = 264 �rQ�rA�rC � Z�1rz;s 375 ; (17a)�s = Z�1(�rz;s � S�y): (17b)42

Application of a direct factorization code for symmetric inde�nite matricesto this equivalent form is an e�ective strategy. The factor routine wouldperform symmetric ordering, pivoting, and computation of the factors, whilesolve would use these factors to solve (17a) and then substitute into (17b)to recover �s.Another possible approach is to perform another step of block elimina-tion and obtain a further reduction to the form" Q+ CTZS�1C ATA 0 # " �x��y # = " �rQ � CTS�1(ZrC + rz;s)�rA # :(18)The main operation in factor would then be to apply a symmetric inde�nitefactorization procedure to the coe�cient matrix in this system, while solvewould perform triangular substitutions to solve (18) and then substituteto recover �z and �s in succession. This variant is less appealing thanthe approach based on (17a), however, since the latter approach allows thefactorization routine to compute its own pivot sequence, while in (18) wehave partially imposed a pivot ordering on the system by performing theadditional step of block elimination. However, if the problem (1) containedno equality constraints (that is, A and b null), the approach (18) might beuseful, as it would allow a symmetric positive de�nite factorization routineto be applied to the matrix Q+ CTZS�1C.Alternative implementations of the factor and solve classes for (1)could apply iterative methods such as QMR [10, 11] or GMRES [22] (seealso Kelley [15]) to the system (17a). Under this scenario, the role of thefactor routine is limited to choosing a preconditioner. Since some elementsof the diagonal matrix Z�1S approach zero while others approach 1, adiagonal scaling that avoids the resulting ill conditioning should form partof the preconditioning strategy.5.2.5 Specializing ProblemFormulationOnce a user has created new subclasses of Data, Variables, Residuals, andLinearSystem appropriate to the new QP formulation, he or she must createa subclass of ProblemFormulation to assemble a compatible set objects tobe used by a QP solver. Assembly might seem to be a simple task notrequiring the use of an additional assembly class, but in practice the processof creating a compatible set of objects can become quite involved, as we nowdiscuss.Consider our example QP formulation (1). Even in this simple case, onemust create all vectors and matrices so that they have compatible sizes and43

so that they are able to copy or wrap the given problem data. The moreabstract and
exible a problem formulation is, the more options tend tobe present when the objects are created. If we wish to create a subclassof Variables for our new QP formulation in which the code is indepen-dent of whether the solver is executed on a uniprocessor platform or on amultiprocessor platform with distributed data, we must make some otherarrangements to ensure that when the instance of Variables is created, thestorage for the variables is allocated and distributed in the appropriate way.A traditional approach for managing this kind of complexity is to isolate thecode for creating a compatible set of components in a separate subroutine.In OOQP, we use the same principle, isolating the code for managing thecomplexity in the methods of a subclass of ProblemFormulation.The abstract ProblemFormulation class has the following prototype.class ProblemFormulation {public:// makeData will often take parameters.// virtual Data * makeData() = 0;virtual Residuals * makeResiduals(Data * prob_in) = 0;virtual LinearSystem * makeLinsys(Data * prob_in) = 0;virtual Variables * makeVariables(Data * prob_in) = 0;virtual ~ProblemFormulation() {};};The makeVariablesmethod is responsible for creating an instance of a sub-class of Variables that is appropriate for this problem structure and forthe computational platform. The other methods have similar purposes forinstances of the other subclasses in the problem formulation layer. An ad-vantage to encapsulating the creation code in a ProblemFormulation classis that it is not necessary to specify how many copies of each object need becreated. This additional
exibility is useful because di�erent QP algorithmsneed di�erent numbers of instances of variable and residual classes.Normally, an instance of ProblemFormulation will be given any pa-rameters that it needs to build a compatible set of objects when it is cre-ated. Take, for example, the class QpExampleDense, which is a subclassof ProblemFormulation used to create objects for solving QPs of the form(1) using dense linear algebra. A partial prototype for the QpExampleDenseclass is as follows.class QpExampleDense : public ProblemFormulation {protected: 44

int mNx, mMy, mMz;public:QpExampleDense(int nx, int my, int mz);};When a QpExampleDense is created by code of the formQpExampleDense * qp = new QpExampleDense(nx, my, mz);it records the problem dimensions n, mA, and mC , allowing it subsequentlyto create objects of the right size.Note that the ProblemFormulation class does not contain the declara-tion of an abstract makeData method. One normally needs additional infor-mation to create Data objects, namely, the problem data itself. A makeDatamethod with no parameters is normally useless; on the other hand, no oneset of parameters would be useful for all formulations. Therefore, there isno appropriate abstract de�nition of makeData.

45

6 Using Linear Algebra ObjectsThis section takes the form of a tutorial on elements of OOQP's linearalgebra layer. It is intended for those who wish to use these linear algebraobjects and operations concretely to de�ne a new problem formulation. Wehave found these objects useful in implementing solvers for the problemformulations supplied with the OOQP distribution, and we believe they willalso be useful to users who wish to implement solvers for their own specialQP formulations. Users are not, however, compelled to use the OOQPlinear algebra layer in implementing their own problem formulation layer;they may write their own code to store the data objects and to perform thelinear algebra operations that are required by the interior-point algorithm.The QP formulations and interior-point algorithms supplied with theOOQP distribution are written in terms of linear algebra operations in ab-stract classes, such as OoqpVector, GenMatrix, and SymMatrix. When wespeak of using linear algebra objects \concretely," we mean accessing thedata contained in these objects directly, in a manner that depends explic-itly on how the data is stored. A code development process using con-crete objects and operations is as follows. The user starts by creating ob-jects that are instances of speci�c concrete subclasses of the abstract lin-ear algebra classes, and manipulates these objects accordingly. Then, theuser migrates to an abstract interface by systematically replacing the data-structure-dependent code in the problem formulation with mathematicaloperations from the abstract base classes. Finally, the user changes thetype declarations of the variables from the concrete classes to abstract baseclasses such as OoqpVector, causing the compiler to disallow any remain-ing data-structure-dependent code. This development process of migratingfrom a working concrete QP formulation to an abstract QP formulation maybe simpler than trying to use the abstract interface on the �rst pass. Thematerial in this section will be helpful for users that follow this path.We start in Section 6.1 by describing the reference counting scheme usedto manage memory in OOQP. In Section 6.2, we describe SimpleVector,a class that can be used in place of arrays of double-precision numbers.Section 6.3 describes classes for storing and manipulating dense matrices,while Section 6.4 discusses classes for sparse matrices.6.1 Reference CountingReference counting is a powerful technique for managing memory that helpsprevent objects from being deleted accidentally or more than once. The46

technique is not limited to C++ code and, despite its name, is unrelatedto the C++ concept of reference variables. Rather, the term means thatwe maintain a count of all \owning references" to an object and delete theobject when this count becomes zero. An owning reference is a typically apointer to an object that is a data member of an instance of another class.Consider, for instance, the following class.class MyVariables : Variables {SimpleVector * mV;public:SimpleVector& v();SimpleVector * getV();void copyV(SimpleVector& w);MyVariables();MyVariables(SimpleVector * v);~MyVariables();};Instances of MyVariableswould hold an owning reference to a SimpleVectorin the variable mV. In the reference counting scheme, the destructor for thisclass would be as follows.MyVariables::~MyVariables(){ IotrRelease(&mV);};Rather than deleting mV, the destructor signals that it is no longer holding areference to the object, so the reference count associated with this object isdecremented. In correct code, every object has at least one owning reference.When the number of owning references has decreased to zero through callsto IotrRelease, the reference counting scheme deletes the object.Usually, objects are created in the constructors of other objects and arereleased when the creating object no longer needs them, typically in thedestructor. For instance, the constructorMyVariables::MyVariables(){ mV = new SimpleVector(5);} 47

creates a new SimpleVector object, and the corresponding destructor willrelease the owning reference to this object when the MyVariables object is�nished with it.Another common scenario is that a pointer to an object may be passedas a parameter to a method or constructor for another object, which maythen wish to establish its own owning reference for the parameter object.This scenario arises in the following constructor.MyVariables::MyVariables(SimpleVector * v_in){ mV = v_in;IotrAddRef(&mV);}The call to IotrAddRef informs the reference counting scheme that a newowning reference to the SimpleVector has been established, so the counterassociated with this object is incremented. If IotrAddRef had not beencalled, the reference counting scheme would assume that the object haddeclined to establish a new owing reference.When objects are passed into methods as C++{style reference variables,rather than via pointers, owning references must not be established. Forinstance, the methodvoid MyVariables::copy(SimpleVector& w){...}may not establish a new owing reference for its parameter w. A similarconvention exists for the return values of functions. A return value that isa C++{style reference variable needs no special attentionSimpleVector& MyVariables::v(){ return *mV;}but if the return value is a pointer, then a new owning reference is alwaysestablished, and so the reference count must be incremented via a call toIotrAddRef:SimpleVector * MyVariables::getV()48

{ IotrAddRef(&mV);return mV;} A typical program makes few calls to IotrAddRef and IotrRelease.For the most part, one may simply call the IotrRelease function insteadof the C++ operator delete.Finally, we mention that OOQP contains a SmartPointer class thathandles calls to IotrAddRef and IotrRelease automatically. This classhas proven useful to the OOQP developers and is present in the OOQPdistribution for others who wish to use it. We will not, however, describe itfurther in this document.6.2 Using SimpleVectorSimpleVector is a class whose instances may be used in place of arrays ofdouble precision numbers. It is a subclass of OOQP's abstract base vectorclass, OoqpVector, and all abstract operations of an OoqpVector are im-plemented in SimpleVector. However, there is one important additionalfeature: The operator [] has been de�ned for SimpleVector, which al-lows indexing to be used to access individual elements in the SimpleVectorobject. For example, the following piece of code involving SimpleVectorobjects a, b, and c is legal, provided that these vectors have compatiblelengths.void add(SimpleVector& a, SimpleVector& b, SimpleVector& c){ for(int i = 0; i < a->length(); i++) {c[i] = a[i] + b[i];}} The elements of a SimpleVector may be passed to a legacy C routinein the manner demonstrated in the following code fragment, which calls theC routine norm on the elements of a.extern "C"double norm(double a[], int len);double mynorm(SimpleVector& a){ return norm(a->elements(), a->length());49

}(Indeed, in most cases, we could use the calling sequencenorm(&a[0], a->length());but this call will fail for vectors of length zero.)SimpleVector objects may be created via calls to a constructor of thefollowing form:// Create a vector of length 5SimpleVector * a = new SimpleVector(5);When interfacing with non-OOQP code, however, it may be preferable toinvoke an alternative constructor that uses an existing array of doubles tostore the elements of the new SimpleVector instance. Use of this construc-tor is demonstrated by the following code fragment.double * v = new double[5];SimpleVector * b = new SimpleVector(v, 5);The array v will be used as the storage location for the elements of b andwill not be deleted when b is deleted.We recommend that users always use operator new to create new in-stances of SimpleVector. Creating SimpleVector on the stack is not sup-ported and may cause unforeseen problems. In other words, users shouldnot create variables of type SimpleVector, but rather should create pointersand references to instances of SimpleVector, as in the examples above.6.3 Using DenseGenMatrix and DenseSymMatrixDenseGenMatrix is a class that represents matrices stored as a dense ar-ray in row-major order. DenseSymMatrix also stores matrix elements in adense array but represents symmetric (rather than general) matrices. Rowand columns indices for the matrices start at zero, following C and C++conventions.The indexing operator [] is de�ned appropriately for both DenseGenMatrixand DenseSymMatrix. The following code fragment, for example, is legal.int myFunc(DenseGenMatrix& M){ for(int i = 0; i < M.rows(); i++) {for(int j = 0; j < M.columns(); j++) M[i][j] = i * 10 + j;}} 50

DenseSymMatrix stores its elements in the lower triangle of the matrix;the result of accessing the upper triangle is unde�ned. An example of codeto �ll a DenseSymMatrix is the following.int mySymFunc(DenseSymMatrix& M){ for(int i = 0; i < M.size(); i++) {for(int j = 0; j <= i; j++) M[i][j] = i * 10 + j;}} The elements of a dense matrix may be passed to legacy C code byinvoking the method elements, which returns a pointer to the full matrixlaid out in row major order. An example is as follows.void myFactor(DenseGenMatrix& M){ factor(M.elements(), M.rows(), M.columns());} Both DenseGenMatrix or DenseSymMatrix provide the method mult,which performs matrix-vector multiplication. For instance, if M is an instanceof either class, the functionvoid func(double beta, SimpleVector& y,double alpha, SimpleVector& x){ M.mult(beta, y, alpha, x)}perform the computation y �y + �Mx. Similarly, transMult computesy �y + �MTx.These classes contain no member functions to factor the matrices. Usersmay either program their own factorization on the elements of the ma-trix or use one of the linear solvers from the OOQP distribution. For aDenseSymMatrix an appropriate linear solver is DeSymIndefSolver. Wedemonstrate the use of this solver in the following sample code, which solvesa linear system with a coe�cient matrix M (an instance of DenseSymMatrix)and right-hand side x (an instance of SimpleVector). The result is returnedin the SimpleVector object y.void mySolve(SimpleVector& y, DenseSymMatrix * M,51

SimpleVector& x){ DeSymIndefSolver * solver = new DeSymIndefSolver(M);solver->matrixChanged();y.copyFrom(x);solver->solve(y);IotrRelease(&solver);}The matrixChangedmethod performs an in-place factorization on the valuesof M, overwriting the original values of this matrix with the values of itsfactors. The solve method uses the factors to compute the solution to thesystem.If it is known that M is positive de�nite, the solver DeSymPSDSolvershould be used in place of DeSymIndefSolver. OOQP does not supplylinear solvers for instances of DenseGenMatrix.A DenseGenMatrix may be created by using the operator new. The fol-lowing code will create a DenseGenMatrix with �ve rows and three columns.DenseGenMatrix * pgM = new DenseGenMatrix(5, 3);Instances of DenseSymMatrix are necessarily square, so only one argumentis needed for the constructor. The following code creates a DenseSymMatrixwith �ve rows and columns.DenseSymMatrix * psM = new DenseSymMatrix(5)As in the SimpleVectorclass, other constructors can be invoked to use anexisting array of doubles as storage space for the new DenseGenMatrix orDenseSymMatrix instances, as demonstrated in the following code fragment.double * gen = new double[5 * 3]double * sym = new double[5 * 5];DenseGenMatrix * pgM = new DenseGenMatrix(gen, 5, 3);DenseSymMatrix * psM = new DenseSymMatrix(sym, 5)The arrays gen and sym will not be deleted when the matrices pgM and psMare created or freed. 52

6.4 Using SparseGenMatrix and SparseSymMatrixIn many practical instances, the matrices used to formulate the QP arelarge and sparse. General sparse matrices and sparse symmetric matricesare represented by SparseGenMatrix and SparseSymMatrix, respectively.Unlike their dense counterparts, SparseGenMatrix and SparseSymMatrixcannot be used as drop-in replacements for an array of doubles because theydo not de�ne the indexing operator [].The data elements of these matrices are stored in a standard compressedformat known as Harwell-Boeing format. In the SparseGenMatrix class,the elements are stored in row-major order, and, as in the dense case, therow and column indices start at zero. Harwell-Boeing format encodes thematrix in three arrays|two arrays of integers and one array of doubles. Foran m � n general matrix containing len nonzero elements, these arrays arerepresented by three data structures within the sparse matrix classes, asfollows.int krowM[m+1];int jcolM[len];double M[len];For each index i = 0; 1; : : : ; m � 1, the nonzero elements from row i arestored in locations krowM[i] through krowM[i+1]-1 of the vector M. (Recallthat we index the rows and columns by 0; 1; : : : ; m� 1 and 0; 1; : : : ; n � 1,respectively.) The column index of each nonzero is stored in the corre-sponding location of jcolM. In other words, for any k between krowM[i]and krowM[i+1]-1 (inclusive) the (i,jcolM[k]) element of the matrix isstored in M[k].For a symmetric matrix, an instance of SparseSymMatrix stores onlythe nonzero elements in the lower triangle of the matrix. Otherwise theformat is identical to that described above for general matrices.Perhaps the simplest way to understand the format is to study the follow-ing code sample, which prints out the elements of the matrix in row-majororder.for(int i = 0; i < m; i++) {for(int k = krowM[i]; k < krowM[i+1]; k++) {cout << "Row: " << i << "column: " << jcolM[k]<< "value: " << M[k] << endl;}} 53

As for the dense classes, the SparseGenMatrix and SparseSymMatrixclasses provide mult and transMult methods, which perform matrix-vectormultiplications.No methods within the sparse matrix classes perform factorizations ofthe matrices. Classes with this functionality are supplied elsewhere in theOOQP distribution, however. The default sparse direct linear equationsolver in the OOQP distribution is the code MA27 from the Harwell SparseLibrary, wrapped in a way that makes it callable from C++ code. The fol-lowing code fragment solves a system of linear equations involving a sparsesymmetric inde�nite matrix. On input, M contains the coe�cient matrixwhile x contains the right-hand side. Neither M nor x is changed in the call,but y is replaced by the solution of the linear system.void mySparseSolve(SimpleVector& y, SparseSymMatrix * M,SimpleVector& x){ Ma27Solver * solver = new Ma27Solver(M);solver->matrixChanged();y.copyFrom(x);solver->solve(y);IotrRelease(&solver);} Users are also free to supply their own sparse solvers. If the solveraccepts Harwell-Boeing format, the three arrays that encode the matrix canbe passed individually as arguments, as can the elements of the right-handside and the solution. If M is a SparseGenMatrix or SparseSymMatrixobject and x and y are SimpleVector objects, then the interface to theuser-supplied solve routine may be as follows.mySparseSolver(M.krowM(), int m, M.jcolM(), M.M(),x.elements(), y.elements());In interior-point algorithms, one frequently must solve a sequence oflinear systems in which the matrices di�er from each other only in the diag-onal elements. Consequently, we supply the methods fromGetDiagonal andatPutDiagonal, whose function is to transfer the diagonal elements betweenan instance of a sparse matrix class and an instance of the SimpleVectorclass. For example, the following code copies diagonal elements (4; 4) through54

(8; 8) inclusive from the SparseSymMatrix object M into the SimpleVectorobjectd.SimpleVector * getMe(SparseSymMatrix& M){ SimpleVector * d = new SimpleVector(5);M.fromGetDiagonal(4, *d);return d;}To copy the elements from d into the diagonals of M, one would use a call ofthe formM.atPutDiagonal(4, *d);which overwrites diagonal elements (4; 4) through (3 + r; 3 + r) with theelements of d, where r is the number of elements in d.Instances of SparseGenMatrix or SparseSymMatrix can be created by�rst �lling the three arrays that encode the matrix in Harwell-Boeing formatand then calling a constructor. For general sparse matrices, this call has thefollowing form:SparseGenMatrix * sgm= new SparseGenMatrix(m, n, len, krowM, jcolM, M);where m and n are the number of rows and columns, respectively, len is thenumber of nonzero elements, and krowM, jcolM, and M are the three arraysdiscussed above. For sparse matrices, the corresponding call isSparseSymMatrix * ssm= new SparseSymMatrix(m, len, krowM, jcolM, M);We emphasize that the arrays krowM, jcolM, and M are not copied but ratherare used directly. They are not deleted when the sparse matrix instancessgm or ssm are freed.Alternative constructors can be used when a description of the matrixis available in sparse triple format. In this simple format, the matrix isencoded in two integer arrays and one double array, all of which have lengthequal to the number of nonzeros in the matrix. (In the case of a symmetricmatrix, only the lower triangle of the matrix is stored.) By de�ning nnz tobe the number of stored nonzeros, and de�ning the three arrays as follows,int irow[nnz];int jcol[nnz];double A[nnz]; 55

we have for any k in the range 0,...,nnz-1 that the element at row irow[k]and column jcol[k] has value A[k]. The elements in this format can besorted into row-major order by calling another routine from the OOQPdistribution, doubleLexSort, in the following way.doubleLexSort(irow, nnz, jcol, A);Given the matrix in this form, with the arrays sorted into row-majorform, we can build an instance of SparseGenMatrix or SparseSymMatrixby �rst calling a constructor with the matrix dimensions and the number ofnon-zeros as arguments, as follows.SparseGenMatrix * sgm = new SparseGenMatrix(m, n, nnz);SparseSymMatrix * ssm = new SparseSymMatrix(m, nnz);We can then call the method putSparseTriple, available in both classes,to place the information in irow, jcol, and A into sgm or ssm. This call hasthe following form.sgm.putSparseTriple(irow, nnz, jcol, A, info);The output parameter info will be set to zero if sgm is large enough to holdthe elements in irow, jcol, and A. Otherwise it will be set to one.
56

7 Specializing Linear Algebra ObjectsThe solver supplied in the OOQP distribution for the formulation (2) withsparse data uses the MA27 [9] sparse inde�nite linear equation solver fromthe Harwell Subroutine Library to solve the systems of linear equations thatarise at each interior-point iteration. Some users may wish to replace MA27with a di�erent sparse solver. (Indeed, we implemented a number of di�erentsolvers during the development of OOQP.) Users also may want to makeother modi�cations to the linear algebra layer supplied with the distribution.For example, it may be desirable to alter the representations of matrix andvectors that are implemented in OOQP's linear algebra layer, by creatingnew subclasses of OoqpVector, SymMatrix, GenMatrix, and DoubleStorage.One motivation for doing so might be to embed OOQP in an applicationscode that de�nes its own specialized matrix and vector storage schemes.In Section 7.1, we describe the process of replacing MA27 by a newlinear solver. Section 7.2 discusses the subclassing of objects in OOQP'slinear algebra layer that may be carried out by users who wish to specializethe representations of matrices and vectors.7.1 Using a Di�erent Linear Equation SolverThe MA27 solver for symmetric inde�nite systems of linear equations is ane�cient, freely available solver from the Harwell Subroutine Library thatis widely used to solve the linear systems that arise in the interior-pointalgorithm applied to sparse QPs of the form (2). By the nature of OOQP'sdesign, however, an advanced user can substitute another solver withoutmuch trouble. This section outlines the steps that must be taken to do so.We focus on replacing a sparse linear solver because this operation is ofgreater practical import than replacing a dense solver and because there area greater variety of sparse factorization codes than of dense codes.7.1.1 Creating a Subclass of DoubleLinearSolverThe �rst step is to create a subclass of the DoubleLinearSolver class. Atypical subclass will have the following prototype.#include "DoubleLinearSolver.h"#include "SparseSymMatrix.h"#include "OoqpVector.h"class MyLinearSolver : public DoubleLinearSolver {57

SparseSymMatrix * mStorage;public:MyLinearSolver(SparseSymMatrix * storage);virtual void diagonalChanged(int idiag, int extent);virtual void matrixChanged();virtual void solve (OoqpVector& vec);virtual ~MyLinearSolver();};Each DoubleLinearSolver object is associated with a matrix. Therefore, atypical constructor for a subclass MyLinearSolver of DoubleLinearSolverwould be as follows.MyLinearSolver::MyLinearSolver(SparseSymMatrix * ssm){ IotrAddRef(&ssm);mMat = ssm; // Here mMat is a data member of MyLinearSolver.}The call to IotrAddRef establishes an owning reference to the matrix (seeSection 6.1). It must be balanced by a call to IotrRelease in the destructor,as follows.MyLinearSolver::~MyLinearSolver(){ IotrRelease(&mMat);} When the linear solver is �rst created, the matrix with which it is associ-ated will not typically contain any data of interest to the linear solver. Oncethe contents of the matrix have been loaded, the interior-point algorithmmay call the matrixChanged method, which triggers a factorization of thematrix. Subsequently, the algorithm performs one or more calls to the solvemethod, each of which uses the matrix factors produced in matrixChangedto solve the linear system for a single right-hand side.Calls to matrixChanged typically occur once at each interior-point itera-tion. It is assumed that the sparsity structure of the matrix does not changebetween calls to matrixChanged; only the data values will be altered. Thisassumption, which holds for all popular interior-point algorithms, allowssubclasses of DoubleLinearSolver to cache information about the spar-sity structure of the matrix and its factors and to reuse this informationthroughout the interior-point algorithm.58

The diagonalChanged method supports those rare solvers that take adi�erent action if only the diagonal elements of the matrix are changed (whileo�-diagonals are left untouched). Most solvers cannot do anything interest-ing in this case; a typical implementation of diagonalChanged simply callsmatrixChanged, as follows.void MyLinearSolver::diagonalChanged(int idiag, int extent){ this->matrixChanged();} The implementation of matrixChanged and solve depends strongly onthe sparse linear system solver in use, as well as on the data format usedto store the sparse matrices. Section 6.4 describes the data format used byour sparse matrix classes. The convention in OOQP is that sparse linearsolvers must not act destructively on the matrix data. In some instances,this restriction requires a copy of part of the matrix data to be made beforefactorization begins. Typically, however, this restriction is not too onerousbecause the �ll-in that occurs during a typical factorization would make itnecessary to allocate additional storage in any case.The opposite convention is in place for subclasses of DoubleLinearSolverthat operate on dense matrices. These invariably perform the factorizationin place, overwriting the matrix data. While having two di�erent conven-tions is far from ideal, we felt it unwise to enforce unnecessary copying ofmatrices in the dense case for the sake of conformity.7.1.2 Creating a Subclass of ProblemFormulationHaving de�ned and implemented a new subclass of DoubleLinearSolver,the user must now arrange so that the new solver, rather than the defaultlinear solver, is created and used by the quadratic programming algorithm.In Section 5.2.4 we described how subclasses of LinearSystem are usedto solve the linear systems arising in interior point algorithms. We givespeci�c examples of how an instance of LinearSystem designed to handleour example QP formulation (1) assembles a matrix and right-hand sideof a system to be passed to a general-purpose linear solver, which wouldnormally be an instance of a subclass of DoubleLinearSolver. In thismanner, we have separated the problem-speci�c reductions and transforma-tions, which are the responsibility of instances of LinearSystems, from thesolution of matrix equations, which are the responsibility of instances ofDoubleLinearSolver. 59

On the other hand, the nature and properties of the DoubleLinearSolverwill a�ect the e�ciency and feasibility of problem-speci�c reductions andtransformations. Moreover, when the LinearSystem assembles the matrixequations to be solved, it must assemble the matrix in a format acceptableto the linear solver. To ensure that a compatible set of objects is created,the DoubleLinearSolver, the matrix it operates on, and LinearSystem arecreated in the same routine.As we discussed in Section 5.2.5, OOQP contains classes|speci�cally,subclasses of ProblemFormulation|that exist for the express purpose ofcreating a compatible set of objects for implementing solvers for QPs witha given formulation. The makeLinsys methods of these classes is, naturally,the place in which appropriate instances of subclasses of LinearSystem arecreated. As we discussed in the earlier section, code for creating a compatiblecollection of objects can become quite involved, so it is natural to collect thiscode in one place. OOQP's approach is to place this code in the methodsof subclasses of ProblemFormulation.To use a new DoubleLinearSolver with an existing problem formu-lation, one must create a new subclass of ProblemFormulation. Sincethe code needed to implement a subclass of ProblemFormulation dependsstrongly on the speci�c data structures of the problem formulation, it isdi�cult to give general instructions on how to write such code. How-ever, we describe below the appropriate procedure for users who wish towork with a sparse variant of the QpGen formulation (2), changing only theDoubleLinearSolver object and retaining the data structures and otheraspects of the formulation that are used in the default (MA27-based) solversupplied with the OOQP distribution. To accommodate such users, we havecreated a subclass of ProblemFormulation called QpGenSparseSeq, whichholds the code common to all formulations of QpGen that uses sparse se-quential linear algebra. Users can create a subclass of QpGenSparseSeq inthe following way.class QpGenSparseMySolver : public QpGenSparseSeq {public:QpGenSparseMySolver(int nx, int my, int mz,int nnzQ, int nnzA, int nnzC);LinearSystem * makeLinsys(Data * prob_in);};The constructor may be implemented by simply passing its arguments throughto the parent constructor. 60

QpGenSparseMySolver::QpGenSparseMySolver(int nx, int my, int mz,int nnzQ, int nnzA, int nnzC) :QpGenSparseSeq(nx, my, mz, nnzQ, nnzA, nnzC){}The implementation of the makeLinsys method is too solver-speci�c to behandled by generic code, but the following code fragment, which is based onthe �le src/QpGen/QpGenSparseMa27.C, may give a useful guide.LinearSystem * QpGenSparseMySolver::makeLinsys(Data * prob_in){ QpGenData * prob = (QpGenData *) prob_in;int n = nx + my + mz;// Include diagonal elements in the matrix, even if they are// zero. Enforce by inserting a diagonal of zeros.SparseSymMatrix * Mat =new SparseSymMatrix(n, n + nnzQ + nnzA + nnzC);SimpleVector * v = new SimpleVector(n);v->setToZero();Mat->setToDiagonal(*v);IotrRelease(&v);prob->putQIntoAt(*Mat, 0, 0);prob->putAIntoAt(*Mat, nx, 0);prob->putCIntoAt(*Mat, nx + my, 0);// The lower triangle is now [Q *]// [A C]MyLinearSolver * solver = new MyLinearSolver(Mat);QpGenSparseLinsys * sys= new QpGenSparseLinsys(this, prob,la, Mat, solver);IotrRelease(&Mat);return sys;} 61

We emphasize that users who wish to alter the MA27-based implementationof the solver for the sparse variant of (2) only by substituting another solverwith similar capabilities to MA27 will be able to use these examples directly,by inserting the names they have chosen for their solver into these codefragments.7.2 Specializing the Representation of Vectors and MatricesAlthough the OOQP linear algebra layer provides a comprehensive set oflinear algebra classes, as described in Section 6, some users may wish touse a di�erent set of data structures to represent vectors and matrices. Thiscould happen, for instance, when the user needs to embed OOQP in a largerprogram with its own data structures already de�ned. The design of OOQPis
exible enough to accommodate user-de�ned linear algebra classes. Inthis section, we outline how such classes can be written and incorporatedinto the code.The vector and matrix classes need to provide methods that, for the mostpart, represent simple linear algebra operations, such as inner products andsaxpy operations. The names are often self-explanatory; those that are spe-ci�c to the needs of the interior-point algorithm are described in the classdocumentation accompanying the OOQP distribution. We note, however,that e�cient implementation of these operations can require a signi�cantdegree of expertise, especially when the data structures are complex. Werecommend that users search for an existing implementation that is com-patible with their data storage needs before attempting to implement themethods themselves. As a rule, it is easier to create OOQP vectors andmatrix classes that wrap existing libraries than to write e�cient code fromscratch.To specialize the representation of vectors and matrices, one must createsubclasses of the following abstract classes:OoqpVector: Represents mathematical vectors.GenMatrix: Represents nonsymmetric and possibly nonsquare matrices asmathematical operators.SymMatrix: Represents symmetric matrices as mathematical operators.DoubleStorage: Contains the concrete code for managing the data struc-tures that hold the matrix data.62

DoubleLinearSolver: Solves linear systems with a speci�c type of matrixas its coe�cient.LinearAlgebraPackage: Creates instances of vectors and matrices.We have outlined how to create a new subclass of DoubleLinearSolverin the preceding section. The remainder of this section will focus on theother new subclasses. We will not describe the methods of these classes indetail, because the majority of them are familiar mathematical operations.We refer the reader to the class documentation accompanying the OOQPdistribution for a description of these methods.The code in the problem formulation layer is implemented b using theabstract linear algebra classes described above. Objects in the problemformulation layer can be created by using instances of user-de�ned subclassesto represent linear algebra objects. We have discussed in the precedingsection and in Section 5.2.5 the use of the ProblemFormulation class increating a compatible set of objects in the problem formulation layer. Userswho wish to specialize the representation of vectors and matrices will alsoneed to create at least one new subclass of ProblemFormulation.The header �le src/Vector/OoqpVector.h de�nes the abstract vectorclass. The header �les de�ning the other abstract classes may be foundin the subdirectory src/Abstract. As a rule, the �les needed to de�ne aparticular implementation of the linear algebra layer are given their ownsubdirectory. Some existing implementations are located in the followingdirectories.src/DenseLinearAlgebra/src/SparseLinearAlgebra/src/PetscLinearAlgebra/Users may wish to refer to these implementations as sample code. Be-cause DenseLinearAlgebra and SparseLinearAlgebra share the same vec-tor implementation, SimpleVector, this code is located in its own directory,named src/Vector. Several linear solvers have also been given their ownsubdirectories below the directory src/LinearSolvers.OOQP does not attempt to force matrices and vectors that are repre-sented in signi�cantly di�erent ways to work together properly. For instance,the distribution contains no method that multiplies a matrix stored acrossseveral processors by a vector whose data is stored on a tape drive attachedto a single processor. Nor do we perform any compile-time checks that onlycompatible linear algebra objects are used together in a particular implemen-tation. Such checks would require heavy use of the C++ template facility,63

and we were wary of using templates because of the portability issues andother costs that might arise. Rather, we endeavored to design our problemformulation classes in a way that makes it di�cult to mix representationsof linear algebra objects accidentally. (We suggest that users who are modi-fying the matrix and vector representations follow this design.) Commonly,we downcast at the start of a method. For example, the following code frag-ment downcasts from the abstract OoqpVector class to the MyVector class,which the mult method in MySymMatrix is intended to use.void MySymMatrix::mult (double beta, OoqpVector& y_in,double alpha, OoqpVector& x_in){ MyVector & y = (MyVector &) y_in;MyVector & x = (MyVector &) x_in;} Subclasses of DoubleStorage are responsible for the physical storage ofmatrix data on a computer. The physical data structure might be as sim-ple as a dense two-dimensional array. In a distributed-computing setting,it could be much more complex. Instances of DoubleStorage are rarelyused in an abstract setting. The code will know precisely what type ofDoubleStorage is being used and what concrete data structures are be-ing used to implement it. Thus, many of the methods of a subclass ofDoubleStorage will be data-structure speci�c.By contrast, each subclass of DoubleStorage will be associated withsubclasses of GenMatrix and SymMatrix that are used primarily in an ab-stract, data-structure-independent fashion. Subclasses of GenMatrix andSymMatrix generally implement their methods by calling the structure-speci�c methods of a subclass of DoubleStorage. By using this designin OOQP, we were able to separate abstract mathematical manipulationsof matrices and vectors from details of their representation. Accordingly, increating their subclasses, users should feel free to implement any structure-dependent methods they need in their implementation of the DoubleStoragesubclass, whereas their implementations of the GenMatrix and SymMatrixsubclasses should adhere more closely to the abstract interface.We emphasize the following points for users who wish to create subclassesfrom the matrix classes: Matrices in OOQP are represented in row-majorform, and row and column indices start at zero. Adherence to these con-ventions will make it easier to refer to existing implementations in designingnew versions of the linear algebra layer. Symmetric matrices in OOQP64

store their elements in the lower triangle of whatever data structure is be-ing used. For some linear algebra implementations, it might be desirableto symmetrize the structure, explicitly storing all elements of the matrix,despite the redundancy this entails. If this approach is chosen, one shouldbe careful to treat the matrix as if only the lower triangle were signi�cant,as subtle bugs may arise otherwise.Subclasses of OoqpVector represent mathematical vectors and shouldadhere closely to the abstract vector interface. The methods of OoqpVectortypically operate on the entire vector. Access to individual elements of thevector should be avoided.Users who implement their own representation of vectors and matriceswill also need to specialize the LinearAlgebraPackage class. This class hasthe following interface (see src/Abstract/LinearAlgebraPackage.h).class LinearAlgebraPackage {protected:LinearAlgebraPackage() {};virtual ~LinearAlgebraPackage() {};public:virtual SymMatrix * newSymMatrix(int size, int nnz) = 0;virtual GenMatrix * newGenMatrix(int m, int n, int nnz) = 0;virtual OoqpVector * newVector(int n) = 0;// Access the type name for debugging purposes.virtual void whatami(char type[32]) = 0;};Instances of LinearAlgebraPackage do nothing more than create vectorsand matrices on request. Our reason for including this class in the OOQPdesign is to provide a mechanism by which abstract code can create newvectors and matrices that are compatible with existing objects. The codecannot call the operator new on a type name and still remain abstract. Useof LinearAlgebraPackage, on the other hand, allows users to create newvectors and matrices, without referring to speci�c vector and matrix types,by invoking the newVector, newSymMatrix, and newGenMatrix methods ofan instance of LinearAlgebraPackage.Instances of LinearAlgebraPackage are never deleted. Because theseinstances are small, the memory overhead is normally insigni�cant. How-ever, it is customary to arrange so that each subclass of LinearAlgebraPackagehas at most one instance, as in the following code fragment.class MyLinearAlgebraPackage : public LinearAlgebraPackage {65

protected:DenseLinearAlgebraPackage() {};virtual ~DenseLinearAlgebraPackage() {};public:static MyLinearAlgebraPackage * soleInstance();// ...}MyLinearAlgebraPackage * MyLinearAlgebraPackage::soleInstance(){ staticMyLinearAlgebraPackage * la = new MyLinearAlgebraPackage;return la;}The use of such a scheme is optional.

66

References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, andD. Sorensen. LAPACK User's Guide. SIAM, Philadelphia, 1992.[2] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik,Lois Curfman McInnes, and Barry F. Smith. PETSc home page.www.mcs.anl.gov/petsc, 2001.[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.Smith. E�cient management of parallelism in object oriented numericalsoftware libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,editors,Modern Software Tools in Scienti�c Computing, pages 163{202,Boston, 1997. Birkhauser Press.[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.Smith. PETSc users manual. Technical Report ANL-95/11 - Revision2.1.0, Argonne National Laboratory, 2001.[5] J. Czyzyk, S. Mehrotra, M.Wagner, and S. J. Wright. PCx: An interior-point code for linear programming. Optimization Methods and Software,11/12:397{430, 1999.[6] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU User's Guide,1999. Available from www.nersc.gov/ xiaoye/SuperLU/.[7] F. Dobrian and A. Pothen. Oblio: A sparse direct solver library for se-rial and parallel computations. Technical report, Department of Com-puter Science, Old Dominion University, 2000.[8] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for SparseMatrices. Clarendon Press, Oxford, 1986.[9] Iain S. Du� and J. K. Reid. MA27 { A set of Fortran subroutinesfor solving sparse symmetric sets of linear equations. Technical ReportAERE R10533, AERE Harwell Laboratory, London, England, 1982.[10] R. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM Journal on Scienti�c Computing,14:470{482, 1993. 67

[11] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual methodfor non-Hermitian linear systems. Numerische Mathematik, 60:315{339,1991.[12] E. M. Gertz and S. J. Wright. Object-oriented software for quadraticprogramming. Preprint ANL/MCS-P999-0901, Mathematics and Com-puter Science Division, Argonne National Laboratory, September 2001.[13] J. Gondzio. Multiple centrality corrections in a primal-dual method forlinear programming. Computational Optimization and Applications,6:137{156, 1996.[14] HSL: A collection of Fortran codes for large scale scienti�c computation,2000. Full details in http://www.numerical.rl.ac.uk/hsl.[15] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.Number 16 in Frontiers in Applied Mathematics. SIAM Publications,Philadelphia, 1995.[16] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic lin-ear algebra subprograms for fortran usage. Application for ComputingMachinery Transactions on Mathematical Software, 5:308{323, 1979.[17] I. Maros and C. M�esz�aros. A repository of convex quadratic program-ming problems. Optimization Methods and Software, 11 and 12:671{681, December 1999.[18] S. Mehrotra. Asymptotic convergence in a generalized predictor-corrector method. Technical Report, Dept. of Industrial Engineeringand Management Science, Northwestern University, Evanston, Ill., Oc-tober 1992.[19] S. Mehrotra. On the implementation of a primal-dual interior pointmethod. SIAM Journal on Optimization, 2:575{601, 1992.[20] B. A. Murtagh. Advanced Linear Programming: Computation andPractice. McGraw-Hill, New York, 1981.[21] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point methods to model predictive control. Journal of OptimizationTheory and Applications, 99:723{757, 1998.[22] H. Walker. Implementation of the GMRES method using Householgertransformations. SIAM Journal on Scienti�c and Statistical Comput-ing, 9:815{825, 1989. 68

[23] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications,Philadelphia, 1997.

69

